CSE 4502/5717 Big Data Analytics - Spring 2018
 Notes taken by: Lina Kloub
 Lecture 1:

Types of problems:

- Decidable:
- Tractable: These are problems for which we can devise algorithms that take reasonable amounts of time. Examples: Matrix multiplication, sorting, etc.
- Intractable: These are problems for which we can devise algorithms but the best known algorithms take very long times to terminate. Examples: Clique, TSP.
- Undecidable - these are problems for which we cannot devise algorithms. Example: The halting problem.

Performance measures:

1. Time Complexity:

- Total number of basic operations (such as +, -, *, /, comparison, etc.) performed by the algorithm.
- Is a function of the input size. Input size is the number of the memory cells needed to describe the problem instance.

Examples:

1. Problem: Sorting n numbers.

Input size: n
2. Problem: Multiplying two $\mathrm{n} \times \mathrm{n}$ matrices.

Input size: $2 n^{2}$

2. Space Complexity:

- Total number of memory cells needed to solve the problem.

Note: both time and space complexities are integer functions of the input size.

Algorithm specification:

Any understandable description is acceptable. To make the description concise the following constructs can be used:

1. Assignment statement.
2. While loops.
3. If-then-else statements, etc.

Example:

Input: two matrices A and B of size $\mathrm{n} \times \mathrm{n}$ each.
Output: multiplication of the two matrices $C=A * B$

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

$$
\begin{aligned}
\text { for } & i=1 \text { to } n \text { do } \\
\text { for } & j=1 \text { to } n \text { do } \\
& C[\bar{i}, j]=0.0 ; \\
& \text { for } k=1 \text { to } n \text { do } \\
& C[i, j]=C[i, j]+A[i, k] * B[k, j] ;
\end{aligned}
$$

Asymptotic functions:

Enable us to simplify functions.

1. We say $f(n)=O(g(n))$ if $f(n) \leq c g(n) \forall n \geq n_{0}$, for some constants c and n_{0}. ex: Matrices multiplication: total number of operations:

$$
\begin{aligned}
& {[n+(n-1)] * n^{2} } \\
= & 2 n^{3}-n^{2} \\
= & O\left(n^{3}\right)
\end{aligned}
$$

2. W say $f(n)=\Omega(g(n))$ iff $g(n)=O(f(n))$
3. We say $f(n)=\theta(g(n))$ iff $f(n)=O(g(n))$ and $g(n)=O(f(n))$.

We could identify three different time complexities (or run times): Best case, Worst case, and average case.

Example: Search problem

Input: A sequence of numbers $X=k_{1}, k_{2}, k_{3}, k_{n}$; and another number x
Output: "Yes" if $x \in X$
"No" otherwise
-let D be the set of all possible inputs
-let T_{I} be the run time on input $I \in D$
-Average run time complixity $=\sum_{I \in D} \frac{T_{I}}{|D|}$
-More generaly, let P_{I} be the probability of input I $\in D$
-Average run time $=\sum_{I \epsilon D} P_{I} T_{I}$

- Average run time for the search algorithm $=\frac{(1+2+\cdots+n)+n}{(n+1)}=\frac{n}{2}+\frac{n}{(n+1)}$

Randomized algorithms:

A randomized algorithm is one where in certain decisions are made based on outcomes of coin flips.

1. Monte Carlo algorithms:
algorithms whose run times can be pre-specified and which have a chance of producing an incorrect result with a low probability.
2. Las Vegas algorithms:
always terminate with the correct answer. The run time of a Las Vegas algorithm is a random variable.
3. Low probability: a probability of $\leq n^{-\alpha}$
where n is the input size, and α is a probability parameter, typically assumed to be a constant.

High probability: means a probability of $\geq\left(1-n^{-\alpha}\right)$.

Example:

Input: An array of n numbers $A[1: n]$, A has $\frac{n}{2}$ copies of one element and the other elements are distinct.
Output: the repeated element
Algorithms:

1. Iterate through the elements. Run time $=(n-1)+(n-2)+\cdots+\left(\frac{n}{2}\right)=\theta\left(n^{2}\right)$
2. Sorting can be used to solve this problem. Sorting takes $\theta(n \log n)$ time.
3. We can solve this problem in linear time. The idea is to group the input into groups of size 3 each and look for duplicates within the individual groups.

We can also see that any deterministic algorithm to solve this problem will need $\Omega(\mathrm{n})$ time in the worst case. We can devise an efficient Las Vegas algorithm to solve this problem.

A Las Vegas algorithm:

Repeat:

flip an n-sided coin to get i; flip an n-sided coin to get j;

Basic step
if $i \neq j$ and $A[i]=A[j]$ then output $A[j]$ and quit;

Forever

Analysis:

Probability of success in one basic step $=\frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{n^{2}}$.
This probability is $\geq \frac{1}{5} \quad \forall n \geq 10$.
Probability of failure in one basic step is no more than $\frac{4}{5}$.
Probability of failure in k successive basic steps is $\leq\left(\frac{4}{5}\right)^{k}$;
we want this to be $\leq n^{-\alpha}$.

This happens when $k \log \left(\frac{4}{5}\right) \leq-\alpha \log n$;
i.e., when $k \geq \frac{\alpha \log n}{\log _{\frac{5}{4}}}$.

Definition:

We say that the run time of Las Vegas algorithm is $\tilde{O}(f(n))$ if the run time is \leq $c \alpha f(n)$, with a probability of $\geq\left(1-n^{-\alpha}\right), \forall n \geq n_{0}$, where c and n_{0} are some constants.

It follows that the run time of the above Las Vegas algorithm is $\tilde{O}(\log n)$.

