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Lecture 1: 

Types of problems: 

• Decidable: 
- Tractable: These are problems for which we can devise algorithms that take 

reasonable amounts of time. Examples: Matrix multiplication, sorting, etc. 
- Intractable: These are problems for which we can devise algorithms but the best 

known algorithms take very long times to terminate. Examples: Clique, TSP. 
• Undecidable – these are problems for which we cannot devise algorithms. Example: The 

halting problem. 

Performance measures: 

1. Time Complexity:  
-  Total number of basic operations (such as +, -, *, /, comparison, etc.) performed by the 
algorithm.  
- Is a function of the input size. Input size is the number of the memory cells  
   needed to describe the problem instance. 

Examples: 

1. Problem: Sorting n numbers. 
Input size: n 

2. Problem: Multiplying two n x n matrices. 
Input size: 2n2 

2. Space Complexity: 
     - Total number of memory cells needed to solve the problem. 

Note: both time and space complexities are integer functions of the input size. 

Algorithm specification: 

Any understandable description is acceptable. To make the description concise the following 
constructs can be used: 

1. Assignment statement. 
2. While loops. 
3. If-then-else statements, etc. 

Example: 
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Input: two matrices A and B of size n x n each. 
Output: multiplication of the two matrices C = A*B 

 	𝐶#$ = ∑ 𝐴#(𝐵($*
(+,  

 
for i = 1 to n do 
    for j = 1 to n do 
        C[i,j] = 0.0; 
        for k = 1 to n do 
            C[i,j] = C[i,j] + A[i,k] *  B[k,j]; 
 

Asymptotic functions: 
Enable us to simplify functions. 
       1. We say 𝑓(𝑛) = 𝑂2𝑔(𝑛)4	  𝑖𝑓				𝑓(𝑛) ≤ 𝑐	𝑔(𝑛)	∀𝑛	 ≥ 𝑛:, for some constants 𝑐	and	𝑛:. 
            ex: Matrices multiplication: total number of operations:  
                  [n + (n-1)] * n2 

                    =  2n3 – n2  
             = O(n3) 

        2. W say 𝑓(𝑛) = 	Ω2𝑔(𝑛)4			𝑖𝑓𝑓			𝑔(𝑛) = 𝑂(𝑓(𝑛)) 

        3. We say 𝑓(𝑛) = 	𝜃2𝑔(𝑛)4		𝑖𝑓𝑓	𝑓(𝑛) = 𝑂2𝑔(𝑛)4	𝑎𝑛𝑑	𝑔(𝑛) = 𝑂2𝑓(𝑛)4. 

We could identify three different time complexities (or run times): Best case, Worst case, and 
average case. 

Example: Search problem 

Input: A sequence of numbers 𝑋 = 	𝑘,	, 𝑘F		, 𝑘G, 𝑘*; and	another	number	𝑥 
Output: “Yes”  𝑖𝑓	𝑥	𝜖	𝑋 
   “No”  otherwise 
-𝑙𝑒𝑡	𝐷	𝑏𝑒	𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑎𝑙𝑙	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒	𝑖𝑛𝑝𝑢𝑡𝑠 
-𝑙𝑒𝑡	𝑇 	𝑏𝑒	𝑡ℎ𝑒	𝑟𝑢𝑛	𝑡𝑖𝑚𝑒	𝑜𝑛	𝑖𝑛𝑝𝑢𝑡	𝐼	𝜖	𝐷 
-𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑢𝑛	𝑡𝑖𝑚𝑒	𝑐𝑜𝑚𝑝𝑙𝑖𝑥𝑖𝑡𝑦 = 	∑ de

|g|^	h	g	  

-𝑀𝑜𝑟𝑒	𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑦, 𝑙𝑒𝑡	𝑃 𝑏𝑒	𝑡ℎ𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡	𝐼	𝜖	𝐷	
-𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑢𝑛	𝑡𝑖𝑚𝑒 = 	∑ 𝑃 𝑇^hg  

-𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑢𝑛	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑠𝑒𝑎𝑟𝑐ℎ	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 	 (,kFk⋯k*)k*
(*k,)
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Randomized algorithms: 
A randomized algorithm is one where in certain decisions are made based on outcomes of coin 
flips.  

       i 
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1. Monte Carlo algorithms:  
algorithms whose run times can be pre-specified and which have a chance of producing 
an incorrect result with a low probability. 

2. Las Vegas algorithms:  
always terminate with the correct answer. The run time of a Las Vegas algorithm is a 
random variable.  

3. Low probability: a probability of ≤	𝑛no  
where n is the input size, and 𝛼 is a probability parameter, typically assumed to be a 
constant. 

High probability: means a probability of ≥ (1 − 𝑛no). 

Example: 

Input: An array of n numbers 𝐴[1: 𝑛], A has *
F
 copies of one element and the other elements are 

distinct. 
Output: the repeated element 
Algorithms: 

1. Iterate through the elements. Run time = (𝑛 − 1) + (𝑛 − 2) +⋯+ w*
F
x = 	𝜃(𝑛F) 

2. Sorting can be used to solve this problem. Sorting takes 𝜃(𝑛 log 𝑛) time. 
3. We can solve this problem in linear time. The idea is to group the input into groups of size 3 
each and look for duplicates within the individual groups. 

We can also see that any deterministic algorithm to solve this problem will need W(n) time in 
the worst case. We can devise an efficient Las Vegas algorithm to solve this problem. 

A Las Vegas algorithm: 

Repeat:   

flip an n-sided coin to get i; 
                flip an n-sided coin to get j;      Basic step 
                if i≠j and A[i] = A[j] then  
                   output A[j] and quit; 
Forever 

Analysis: 

Probability of success in one basic step =	
w{|xw

{
|n,x

*|
. 

This probability is ≥ ,
}
			∀𝑛 ≥ 10. 

Probability of failure in one basic step is no more than �
}
. 

Probability of failure in k successive basic steps is ≤ w�
}
x
(
; 

we want this to be ≤ 𝑛no. 



This happens when 𝑘	log w�
}
x ≤ 	−𝛼 log 𝑛; 

i.e., when 𝑘 ≥ 	 o ���*
�����

. 

 
Definition:
𝑊𝑒	𝑠𝑎𝑦	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒	𝑟𝑢𝑛	𝑡𝑖𝑚𝑒	𝑜𝑓	𝐿𝑎𝑠	𝑉𝑒𝑔𝑎𝑠	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	𝑖𝑠	𝑂�2𝑓(𝑛)4	𝑖𝑓	𝑡ℎ𝑒	𝑟𝑢𝑛	𝑡𝑖𝑚𝑒	𝑖𝑠	 ≤
𝑐𝛼𝑓(𝑛), 𝑤𝑖𝑡ℎ	𝑎	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	 ≥ (1 − 𝑛no), ∀𝑛 ≥ 𝑛:, 𝑤ℎ𝑒𝑟𝑒	𝑐	𝑎𝑛𝑑	𝑛:	𝑎𝑟𝑒	𝑠𝑜𝑚𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 
 

It follows that the run time of the above Las Vegas algorithm is 𝑂�(log 𝑛). 

 


