CSE 4502/5717: Big Data Analytics
Notes by Ashily Varghese
Lecture 11 (2/28/2018)
SUFFIX TREE
FACT: For any given string of length m, we can construct a suffix tree in O (m) time (UKKONEN, 1992).
FACT: There is an easy algorithm that takes O (m?) time.
PROOF:
LetT=t; tr t3..... tm
Fori=1tondo
Let Ri; be the tree containing the suffixes S, S,,, Si.1;
Insert S; into R;; to get R; as follows:
Start matching the characters of S; with labels of edges starting from the root.
We will come to a point where no more characters can be matched.

If this happens at a node u in R, then create a new child for u with an edge whose label will be the
remaining characters of S;.

If this happens in the middle of an edge, split the edge and create a new node as before.

Example: T = baabcab$

Definition:
1. The label of a path is the ordered concatenation of the edge labels in the path.
2. The path label of a node is the label of the path from the root to that node.

3. The string depth of a node is the number of characters in its path label.

A GENERALIZED SUFFIX TREE
Let S, S,,....,Sk be strings from an alphabet 5

A generalized suffix tree on Sy, S,,....,S¢ is a tree Q in which there is a leaf for every suffix of every string.
A leaf is labelled with (i,j) where i is the string ID and j is the suffix number within this string.

Example: S; = abaabs, S, = bbaab$

08 @)

FACT: We can construct a generalized suffix tree on Sy, S,,....,S¢ in O(5i-i | Si|) time.

One Idea: Construct a suffix tree on S; $1 S5 $,...Sk, Sk and eliminate unwanted paths.

Problem1

INPUT:

T=tt ...t <--TEXT

P = p; Pa...pn <-- PATTERN

OUTPUT: All occurrences of Pin T.

Example:

T=baababaabhb

P=aab

There are two occurrences of P in T (starting from positions 2 and 7).
A simple algorithm takes O (mn) time.

Claim: We can solve this problem in O (m+n+ k) time using a suffix tree, where k is the number of
matches.

Algorithm:

1. Construct a suffix tree Q for T;

2. Start matching the characters of P starting from the root. If we are able to match all the characters
and end up at a mode u, then all the leaves in the subtree rooted at u correspond to matches.

On the other hand, if we are not able to match all the characters of P, then P does not occur in T.

Problem 2
INPUT: T, P4, Py,, Pq
OUTPUT: All the occurrences of all the patternsin T.
Clam: We can solve thisin O (m + N + k) time, where
m=|T[;
N = Y110 q | Pil @and K= Y110 q ki, Where k; is the number of occurrences of P;in T, 1<=i<=q.
Idea: Construct a suffix tree Q for T,
for 1<=i<=qdo
Use the previous algorithm to find the occurrences of P;in T.

Run time =0 (M) + O (Y (iz1t0q) (IPi | + |ki])) = O (m + N +K).

Problem 3

INPUT: A database DB of texts Ty, Ty, ..., Tq and patterns Py, P, ..., P,

OUTPUT: All the occurrences of all the patterns in the DB.

FACT: We can solve thisin O (M + N + K) time, where M =3 (1104 | Til, N= 3 (c1t0n) | Pil and
K =3 (z1tom ki, Where k; is the number of occurrences of P; in the DB.

IDEA: Construct a generalize suffix tree Q for Ty, T, ..., Tq

For1<=1<=ndo

Find the occurrences of P;in Q;

Problem 4

The longest common substring problem

INPUT: Two strings S; and S,

OUTPUT: The longest common substring between S; and S,

Example:

S; = identical

S, = dentist

Longest common substring = denti

S1 =231 3;....3;...a,

S, = by by....b;....bp,

One simple Algorithm:

For alli, j do: Identify the longest substrings starting from a; in S; and b;in S, that match.
Total runtime = O (n®).

FACT: We can solve this problem in O (m + n) time using a suffix tree.
Proof: An Algorithm:

1. Construct a generalized suffix tree on S; and S,

2. With a tree traversal label any node u of Q with 1 if the subtree rooted at u has a leaf corresponding
to a suffix of Sy;

Label any node u of Q with 2 if the subtree rooted at u has a leaf corresponding to a suffix of S;
If a node u has labels 1 and 2 then its path label is common to S; and S,.
Thus a node with labels 1 and 2 and whose string depth is the largest will give us the answer.

More details will be provided in the next lecture.

