CSE 4502/5717: Big Data Analytics

Notes by Ashily Varghese

Lecture 11 (2/28/2018)

SUFFIX TREE

FACT: For any given string of length m, we can construct a suffix tree in O (m) time (UKKONEN, 1992).

FACT: There is an easy algorithm that takes $O(m^2)$ time.

PROOF:

Let T = $t_1 t_2 t_3 \dots t_m$

For i = 1 to n do

Let R_{i-1} be the tree containing the suffixes S_1 , S_2 , ..., S_{i-1} ;

Insert S_i into R_{i-1} to get R_i as follows:

Start matching the characters of S_i with labels of edges starting from the root.

We will come to a point where no more characters can be matched.

If this happens at a node u in R_{i-1} , then create a new child for u with an edge whose label will be the remaining characters of S_i .

If this happens in the middle of an edge, split the edge and create a new node as before.

Example: T = baabcab\$

Definition:

- 1. The label of a path is the ordered concatenation of the edge labels in the path.
- 2. The path label of a node is the label of the path from the root to that node.
- 3. The string depth of a node is the number of characters in its path label.

A GENERALIZED SUFFIX TREE

Let S_1 , S_2 ,..., S_k be strings from an alphabet Σ

A generalized suffix tree on S_1 , S_2 ,..., S_k is a tree Q in which there is a leaf for every suffix of every string. A leaf is labelled with (i,j) where i is the string ID and j is the suffix number within this string.

Example: S_1 = abaab\$, S_2 = bbaab\$

<u>FACT</u>: We can construct a generalized suffix tree on $S_1, S_2, ..., S_k$ in $O(\sum_{i=1}^k |S_i|)$ time.

<u>One Idea</u>: Construct a suffix tree on $S_1 \ddagger_1 S_2 \ddagger_2 \dots S_k$, \ddagger_k and eliminate unwanted paths.

Problem1

INPUT:

 $T = t_1 t_2 \dots t_m < -- TEXT$

 $P = p_1 p_2 \dots p_n \iff PATTERN$

OUTPUT: All occurrences of P in T.

Example:

T = b a a b a b a a b b

P = a a b

There are two occurrences of P in T (starting from positions 2 and 7).

A simple algorithm takes O (mn) time.

Claim: We can solve this problem in O (m+n+k) time using a suffix tree, where k is the number of matches.

Algorithm:

1. Construct a suffix tree Q for T;

2. Start matching the characters of P starting from the root. If we are able to match all the characters and end up at a mode u, then all the leaves in the subtree rooted at u correspond to matches.

On the other hand, if we are not able to match all the characters of P, then P does not occur in T.

Problem 2

INPUT: T; P₁, P₂,, P_q

OUTPUT: All the occurrences of all the patterns in T.

Clam: We can solve this in O (m + N + k) time, where

m = |T|;

 $N = \sum_{i=1 \text{ to } q} |P_i|$ and $K = \sum_{i=1 \text{ to } q} k_i$, where k_i is the number of occurrences of P_i in T, 1<= i <= q.

Idea: Construct a suffix tree Q for T,

for 1<= i <= q do

Use the previous algorithm to find the occurrences of P_i in T.

Run time = O (m) + O $(\sum_{i=1 \text{ to } q}) (|P_i| + |k_i|) = O (m + N + K).$

Problem 3

INPUT: A database DB of texts T_1 , T_2 , ..., T_q and patterns P_1 , P_2 ,, P_n

OUTPUT: All the occurrences of all the patterns in the DB.

FACT: We can solve this in O (M + N + K) time, where M = $\sum_{(i=1 \text{ to } q)} |T_i|$, N = $\sum_{(i=1 \text{ to } n)} |P_i|$ and

 $K = \sum_{i=1 \text{ to } n} k_i$, where k_i is the number of occurrences of P_i in the DB.

IDEA: Construct a generalize suffix tree Q for $T_1, T_2, ..., T_q$

For 1 <= I <= n do

Find the occurrences of P_i in Q;

Problem 4

The longest common substring problem

INPUT: Two strings S₁ and S₂

OUTPUT: The longest common substring between S1 and S2

Example:

 $S_1 = identical$

 $S_2 = dentist$

Longest common substring = denti

 $S_1 = a_1 a_2 \dots a_i \dots a_n$

 $S_2 = b_1 b_2 \dots b_j \dots b_m$

One simple Algorithm:

For all i, j do: Identify the longest substrings starting from a_i in S_1 and b_j in S_2 that match.

Total runtime = $O(n^3)$.

FACT: We can solve this problem in O (m + n) time using a suffix tree.

Proof: An Algorithm:

1. Construct a generalized suffix tree on S_1 and S_2

2. With a tree traversal label any node u of Q with 1 if the subtree rooted at u has a leaf corresponding to a suffix of S_1 ;

Label any node u of Q with 2 if the subtree rooted at u has a leaf corresponding to a suffix of S₂;

If a node u has labels 1 and 2 then its path label is common to S_1 and S_2 .

Thus a node with labels 1 and 2 and whose string depth is the largest will give us the answer.

More details will be provided in the next lecture.