
CSE	4502/5717:	Big	Data	Analytics	

Notes	by	Ashily	Varghese	

Lecture	11	(2/28/2018)	

SUFFIX	TREE	

FACT:	For	any	given	string	of	length	m,	we	can	construct	a	suffix	tree	in	O	(m)	time	(UKKONEN,	1992).	

FACT:	There	is	an	easy	algorithm	that	takes	O	(m2)	time.	

PROOF:		

Let	T	=	t1	t2	t3	…..	tm	

For	i	=	1	to	n	do	

								Let	Ri-1	be	the	tree	containing	the	suffixes	S1,	S2,	….,	Si-1;	

Insert	Si	into	Ri-1	to	get	Ri	as	follows:	

Start	matching	the	characters	of	Si	with	labels	of	edges	starting	from	the	root.	

We	will	come	to	a	point	where	no	more	characters	can	be	matched.	

If	this	happens	at	a	node	u	in	Ri-1,	then	create	a	new	child	for	u	with	an	edge	whose	label	will	be	the	
remaining	characters	of	Si.	

If	this	happens	in	the	middle	of	an	edge,	split	the	edge	and	create	a	new	node	as	before.	

Example:	T	=	baabcab$	

	

Definition:	

1.	The	label	of	a	path	is	the	ordered	concatenation	of	the	edge	labels	in	the	path.	

2.	The	path	label	of	a	node	is	the	label	of	the	path	from	the	root	to	that	node.	

3.	The	string	depth	of	a	node	is	the	number	of	characters	in	its	path	label.	

	

A	GENERALIZED	SUFFIX	TREE	

Let	S1,	S2,….,Sk	be	strings	from	an	alphabet	∑	

A	generalized	suffix	tree	on	S1,	S2,….,Sk	is	a	tree	Q	in	which	there	is	a	leaf	for	every	suffix	of	every	string.	
A	leaf	is	labelled	with	(i,j)	where	i	is	the	string	ID	and	j	is	the	suffix	number	within	this	string.	

Example:	S1	=	abaab$,	S2	=	bbaab$	

	 	

	
	

FACT:	We	can	construct	a	generalized	suffix	tree	on	S1,	S2,….,Sk	in	O(∑i=1
k	|Si|)	time.	

One	Idea:	Construct	a	suffix	tree	on	S1	$1	S2	$2…Sk,	$k	and	eliminate	unwanted	paths.	

	 	

Problem1	

INPUT:		

T	=	t1	t2	….tm		<--	TEXT	

P	=	p1	p2…pn		<--	PATTERN	

OUTPUT:	All	occurrences	of	P	in	T.	

Example:		

T	=	b	a	a	b	a	b	a	a	b	b	

P	=	a	a	b	

There	are	two	occurrences	of	P	in	T	(starting	from	positions	2	and	7).	

A	simple	algorithm	takes	O	(mn)	time.	

Claim:	We	can	solve	this	problem	in	O	(m+n+	k)	time	using	a	suffix	tree,	where	k	is	the	number	of	
matches.	

Algorithm:	

1.	Construct	a	suffix	tree	Q	for	T;	

2.	Start	matching	the	characters	of	P	starting	from	the	root.	If	we	are	able	to	match	all	the	characters	
and	end	up	at	a	mode	u,	then	all	the	leaves	in	the	subtree	rooted	at	u	correspond	to	matches.	

On	the	other	hand,	if	we	are	not	able	to	match	all	the	characters	of	P,	then	P	does	not	occur	in	T.	
	

Problem	2	

INPUT:	T;	P1,	P2,	….,	Pq	

OUTPUT:	All	the	occurrences	of	all	the	patterns	in	T.	

Clam:	We	can	solve	this	in	O	(m	+	N	+	k)	time,	where		

m	=	|T|;	

N	=	∑(i=1	to	q)|Pi|	and	K	=	∑(i=1	to	q)	ki,	where	ki	is	the	number	of	occurrences	of	Pi	in	T,	1<=	i	<=	q.	

Idea:	Construct	a	suffix	tree	Q	for	T,	

for	1<=	i	<=	q	do	

	 Use	the	previous	algorithm	to	find	the	occurrences	of	Pi	in	T.	

Run	time	=	O	(m)	+	O	(∑	(i=1	to	q)	(|Pi	|	+	|ki|))	=	O	(m	+	N	+	K).	

	 	

Problem	3	

INPUT:	A	database	DB	of	texts	T1,	T2,	…,	Tq	and	patterns	P1,	P2,	….,	Pn	

OUTPUT:	All	the	occurrences	of	all	the	patterns	in	the	DB.	

FACT:	We	can	solve	this	in	O	(M	+	N	+	K)	time,	where	M	=	∑	(i=1	to	q)	|Ti|,	N	=	∑	(i=1	to	n)	|Pi|	and		

K	=	∑	(i=1	to	n)	ki,	where	ki	is	the	number	of	occurrences	of	Pi	in	the	DB.	

IDEA:	Construct	a	generalize	suffix	tree	Q	for	T1,	T2,	…,	Tq	

For	1	<=	I	<=	n	do		

	 Find	the	occurrences	of	Pi	in	Q;	

	 	

Problem	4	

The	longest	common	substring	problem	

INPUT:	Two	strings	S1	and	S2	

OUTPUT:	The	longest	common	substring	between	S1	and	S2	

Example:		

S1	=	identical	

S2	=	dentist	

Longest	common	substring	=	denti	

S1	=	a1	a2….ai…an	

S2	=	b1	b2….bj….bm	

One	simple	Algorithm:	

For	all	i,	j	do:	Identify	the	longest	substrings	starting	from	ai	in	S1	and	bj	in	S2	that	match.	

Total	runtime	=	O	(n3).	

FACT:	We	can	solve	this	problem	in	O	(m	+	n)	time	using	a	suffix	tree.	

Proof:	An	Algorithm:	

1.	Construct	a	generalized	suffix	tree	on	S1	and	S2	

2.	With	a	tree	traversal	label	any	node	u	of	Q	with	1	if	the	subtree	rooted	at	u	has	a	leaf	corresponding	
to	a	suffix	of	S1;	

Label	any	node	u	of	Q	with	2	if	the	subtree	rooted	at	u	has	a	leaf	corresponding	to	a	suffix	of	S2;	

If	a	node	u	has	labels	1	and	2	then	its	path	label	is	common	to	S1	and	S2.	

Thus	a	node	with	labels	1	and	2	and	whose	string	depth	is	the	largest	will	give	us	the	answer.	

More	details	will	be	provided	in	the	next	lecture.		

