Notes by Ashily Varghese
Lecture 11 (2/28/2018)

SUFFIX TREE

FACT: For any given string of length m, we can construct a suffix tree in $O(m)$ time (UKKONEN, 1992).
FACT: There is an easy algorithm that takes $\mathrm{O}\left(\mathrm{m}^{2}\right)$ time.

PROOF:

Let $T=t_{1} t_{2} t_{3} \ldots \ldots t_{m}$
For $\mathrm{i}=1$ to n do
Let R_{i-1} be the tree containing the suffixes $S_{1}, S_{2}, \ldots, S_{i-1}$;
Insert S_{i} into $\mathrm{R}_{\mathrm{i}-1}$ to get R_{i} as follows:
Start matching the characters of S_{i} with labels of edges starting from the root.
We will come to a point where no more characters can be matched.
If this happens at a node u in R_{i-1}, then create a new child for u with an edge whose label will be the remaining characters of S_{i}.

If this happens in the middle of an edge, split the edge and create a new node as before.
Example: T = baabcab\$

Definition:

1. The label of a path is the ordered concatenation of the edge labels in the path.
2. The path label of a node is the label of the path from the root to that node.
3. The string depth of a node is the number of characters in its path label.

A GENERALIZED SUFFIX TREE

Let $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ be strings from an alphabet \sum
A generalized suffix tree on $S_{1}, S_{2}, \ldots, S_{k}$ is a tree Q in which there is a leaf for every suffix of every string. A leaf is labelled with (i, j) where i is the string ID and j is the suffix number within this string.

Example: $S_{1}=a b a a b \$, S_{2}=b b a a b \$$

FACT: We can construct a generalized suffix tree on $S_{1}, S_{2}, \ldots, S_{k}$ in $O\left(\sum_{i=1}^{k}\left|S_{i}\right|\right)$ time.
One Idea: Construct a suffix tree on $\mathrm{S}_{1} \$_{1} \mathrm{~S}_{2} \$_{2} \ldots \mathrm{~S}_{\mathrm{k}}, \$_{\mathrm{k}}$ and eliminate unwanted paths.

Problem1

INPUT:
$\mathrm{T}=\mathrm{t}_{1} \mathrm{t}_{2} \ldots . \mathrm{t}_{\mathrm{m}}<--$ TEXT
$P=p_{1} p_{2} \ldots p_{n}<--$ PATTERN
OUTPUT: All occurrences of P in T.
Example:
$T=b a a b a b a b b$
$P=a b b$

There are two occurrences of P in T (starting from positions 2 and 7).
A simple algorithm takes $\mathrm{O}(\mathrm{mn})$ time.
Claim: We can solve this problem in $O(m+n+k)$ time using a suffix tree, where k is the number of matches.

Algorithm:

1. Construct a suffix tree Q for T;
2. Start matching the characters of P starting from the root. If we are able to match all the characters and end up at a mode u, then all the leaves in the subtree rooted at u correspond to matches.

On the other hand, if we are not able to match all the characters of P, then P does not occur in T.

Problem 2

INPUT: T; $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots ., \mathrm{P}_{\mathrm{q}}$
OUTPUT: All the occurrences of all the patterns in T.
Clam: We can solve this in $\mathrm{O}(\mathrm{m}+\mathrm{N}+\mathrm{k})$ time, where
$\mathrm{m}=|\mathrm{T}| ;$
$N=\sum_{(i=1 \text { to } q)}\left|P_{i}\right|$ and $K=\sum_{(i=1 \text { to } q)} k_{i}$, where k_{i} is the number of occurrences of P_{i} in $T, 1<=\mathrm{i}<=q$.
Idea: Construct a suffix tree Q for T,
for $1<=\mathrm{i}<=\mathrm{q}$ do
Use the previous algorithm to find the occurrences of P_{i} in T.
Run time $=O(m)+O\left(\sum_{(i=1 \text { to } q)}\left(\left|P_{i}\right|+\left|k_{i}\right|\right)\right)=O(m+N+K)$.

Problem 3

INPUT: A database DB of texts $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{q}}$ and patterns $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots ., \mathrm{P}_{\mathrm{n}}$
OUTPUT: All the occurrences of all the patterns in the DB.
FACT: We can solve this in $\mathrm{O}(\mathrm{M}+\mathrm{N}+\mathrm{K})$ time, where $\mathrm{M}=\sum_{(\mathrm{i}=1 \text { to } \mathrm{q})}\left|\mathrm{T}_{\mathrm{i}}\right|, \mathrm{N}=\sum_{(\mathrm{i}=1 \text { ton })}\left|\mathrm{P}_{\mathrm{i}}\right|$ and
$K=\sum_{(i=1 \text { ton })} k_{i}$, where k_{i} is the number of occurrences of P_{i} in the DB.
IDEA: Construct a generalize suffix tree Q for $T_{1}, T_{2}, \ldots, T_{q}$
For $1<=1<=n$ do
Find the occurrences of P_{i} in Q;

Problem 4

The longest common substring problem
INPUT: Two strings S_{1} and S_{2}
OUTPUT: The longest common substring between S_{1} and S_{2}
Example:
$\mathrm{S}_{1}=$ identical
$S_{2}=$ dentist
Longest common substring = denti
$S_{1}=a_{1} a_{2} \ldots a_{i} \ldots a_{n}$
$S_{2}=b_{1} b_{2} \ldots b_{j} \ldots b_{m}$
One simple Algorithm:
For all i, j do: Identify the longest substrings starting from a_{i} in S_{1} and b_{j} in S_{2} that match.
Total runtime $=0\left(\mathrm{n}^{3}\right)$.
FACT: We can solve this problem in $O(m+n)$ time using a suffix tree.
Proof: An Algorithm:

1. Construct a generalized suffix tree on S_{1} and S_{2}
2. With a tree traversal label any node u of Q with 1 if the subtree rooted at u has a leaf corresponding to a suffix of S_{1};

Label any node u of Q with 2 if the subtree rooted at u has a leaf corresponding to a suffix of S_{2};
If a node u has labels 1 and 2 then its path label is common to S_{1} and S_{2}.
Thus a node with labels 1 and 2 and whose string depth is the largest will give us the answer.
More details will be provided in the next lecture.

