CSE 4502/5717 - Big Data Analytics

Lecture 12 - Note by Arun George

March 5th, 2018

Suffix Trees: Applications

Problem 4: Longest Common Substring Problem

Input: Two strings S_{1} and S_{2} with $s_{1}=\left|S_{1}\right|$ and $s_{2}=\left|S_{2}\right|$.
Output: The longest common substring between S_{1} and S_{2}.
An Example: If $S_{1}=a a b a b b a b$, and $S_{2}=b \underline{b a b b a a}$, then the longest common substring between S_{1} and S_{2} is babba.

Fact : We can solve this problem in $O(M)$ time, where $\mathrm{M}=s_{1}+s_{2}$.
Here is an Algorithm :

1) Construct a generalized suffix tree (GST) Q for $S_{1} \& S_{2}$;
2) Do a traversal on Q and label any node u with 1 if there exists a leaf in the subtree rooted at u, corresponding to a suffix of S_{1}, and label any node u with 2 if there exists a leaf in the subtree rooted at u, corresponding to a suffix of S_{2};
3) Do a traversal on Q, to identify the node u that is labeled with $1 \& 2$, and whose string depth is the largest. The output will be the path label of u.

An Example

If $S_{1}=$ constant and $S_{2}=$ standard, then the longest common substring between S_{1} and S_{2} is stan.

Problem 5

Input: Two strings S_{1} and S_{2}, and an integer l;
Output : All substrings of S_{2} of length $\geq l$, that occur in S_{1}

Fact : We can solve this in $O(M)$ time, where $M=\left|S_{1}\right|+\left|S_{2}\right|$.

Here is an Algorithm :

1) Construct a GST Q on $S_{1} \& S_{2}$. Label the nodes of Q with $1 \& 2$ as before;
2) Look for all the nodes u, that are labeled with $1 \& 2$ and whose string depths are $\geq l$; The path label of any such u is a correct answer.

Problem 6

Input: Strings $S_{1}, C_{1}, C_{2}, \ldots, C_{k}$, and an integer l;
Output : All substrings of $C_{1}, C_{2}, \ldots, C_{k}$ of length $\geq l$, that occur in S_{1};
Fact: We can solve this problem in $O(M)$ time, where $\mathrm{M}=\left|S_{1}\right|+\sum_{i=1}^{k}\left|C_{i}\right|$

Here is an Algorithm :

1) Construct a GST Q on $S_{1}, \& C_{1}, C_{2}, \ldots, C_{k}$;
2) Mark the nodes such that a node u is marked if the subtree rooted at u has a leaf corresponding to a suffix of S_{1} and a leaf corresponding to a suffix of at least one of $C_{1}, C_{2}, \ldots, C_{k}$;
3) If a node is marked and if its string depth is $\geq l$, then the path label of u is a correct answer.

Problem 7

Input: Strings $S_{1}, S_{2}, \ldots, S_{k}$;
Output : $l[2: n]$, such that $l[i]$ is the length of the longest common substring in $\geq i$ strings;

An Example:

$S_{1}=a b a a b b a$
$S_{2}=a a a b a b a$
$S_{3}=a a b a a b b b$
$S_{4}=a a a a b b a a$
$S_{5}=b b a a a b a b$
In this case,
$l[5]=3$ and the corresponding longest common substring is $a a b ;$
$l[4]=3$ and the corresponding longest common substring is $a a b ;$
$l[3]=4$ and the corresponding longest common substring is $a a b b ;$
$l[2]=6$ and the corresponding longest common substring is aaabab.

Claim : We can solve this in $O(M n)$ time, where $M=\sum_{i=1}^{k}\left|S_{i}\right|$.

Here is an Algorithm:

1) Construct a GST Q on $S_{1}, S_{2}, \ldots, S_{k}$. This will take $O(M)$ time;
2) For every node v in Q compute $c[v]$ as the number of distinct strings represented in the leaves of the subtree rooted at v; An algorithm for computing these value is given below.
3) for $2 \leq i \leq n$ do

Do a traversal on Q to identify the node v such that $c[v]=i$ and the string depth of v is the largest. Let $q[i]=$ the string depth of v.
This step will take $O(M n)$ time;
4) Output $l[n], l[n-1], \ldots, l[2]$ as the prefix maxima of $q[n], q[n-1], \ldots, q[2]$.

This step will take $O(n)$ time.
Computing $c[]$ values:
To compute $c[]$ values use a bit array $u^{v}[1: n]$, for every node v in Q.
for every node v in Q do
If v is a leaf, then set $u^{v}[i]=1$ if v has a label corresponding to a suffix of S_{i}; otherwise set $u^{v}[i]=0$;

If v is an internal node, then, compute $u^{v}[1: n]$ as the boolean OR of the bit arrays of its children.

For any node $v \in Q$, we can get $c[v]$ as the number of ones in $u^{v}[1: n]$. The total time taken is $O(M n)$.

Problem 8: All pairs suffix-prefix problem

Input: Strings $S_{1}, S_{2}, \ldots, S_{k}$;
Output: $\forall i, j$ output the length of the largest suffix of S_{i} that is a prefix of S_{j}.

An Example:

$S_{1}=$ aababbaabbb
$S_{2}=$ babaaaaba
In this example, the longest suffix of S_{2} that is a prefix of S_{1} is aaba. The longest suffix of S_{1} that is a prefix of S_{2} is b.

An interesting application for this problem is in de novo sequence assembly.
Claim : We can solve this problem in $O\left(M+n^{2}\right)$ time, where $\mathrm{M}=\sum_{i=1}^{n}\left|S_{i}\right|$.
Proof: We offer an algorithm. Construct a GST Q on $S_{1}, S_{2}, \ldots, S_{k}$.
Definition : Let an edge be terminal if it is labeled with $\$$ with one end point being a leaf.

For every S_{j} there is a leaf in Q labeled $(\mathrm{j}, 1)$, the path from the root to this leaf corresponding to $S_{j}, 1 \leq j \leq n$.
(To be continued)

