
CSE 4502/5717 - Big Data Analytics

Lecture 12 - Note by Arun George

March 5th, 2018

Suffix Trees: Applications

Problem 4: Longest Common Substring Problem
Input : Two strings S1 and S2 with s1 = |S1| and s2 = |S2|.
Output : The longest common substring between S1 and S2.

An Example: If S1 = aababbab , and S2 = bbabbaa, then the longest common
substring between S1 and S2 is babba.

Fact : We can solve this problem in O(M) time, where M = s1 + s2.

Here is an Algorithm :

1) Construct a generalized suffix tree (GST) Q for S1 & S2;
2) Do a traversal on Q and label any node u with 1 if there exists a leaf in

the subtree rooted at u, corresponding to a suffix of S1, and label any node u
with 2 if there exists a leaf in the subtree rooted at u, corresponding to a suffix
of S2;

3) Do a traversal on Q, to identify the node u that is labeled with 1 & 2,
and whose string depth is the largest. The output will be the path label of u.

An Example
If S1 = constant and S2 = standard, then the longest common substring

between S1 and S2 is stan.

1

Problem 5
Input : Two strings S1 and S2, and an integer l ;
Output : All substrings of S2 of length ≥ l, that occur in S1

Fact : We can solve this in O(M) time, where M = |S1| + |S2|.

Here is an Algorithm :

1) Construct a GST Q on S1 & S2. Label the nodes of Q with 1 & 2 as
before;

2) Look for all the nodes u, that are labeled with 1 & 2 and whose string
depths are ≥ l ; The path label of any such u is a correct answer.

Problem 6
Input : Strings S1, C1, C2, . . . , Ck, and an integer l ;
Output : All substrings of C1, C2, . . . , Ck of length ≥ l, that occur in S1;

Fact : We can solve this problem in O(M) time, where M = |S1| +
∑k

i=1 |Ci|

Here is an Algorithm :

1) Construct a GST Q on S1, & C1, C2, . . . , Ck;
2) Mark the nodes such that a node u is marked if the subtree rooted at u

has a leaf corresponding to a suffix of S1 and a leaf corresponding to a suffix of
at least one of C1, C2, . . . , Ck;

2

3) If a node is marked and if its string depth is ≥ l, then the path label of
u is a correct answer.

Problem 7
Input : Strings S1, S2, . . . , Sk;
Output : l[2 : n], such that l[i] is the length of the longest common substring

in ≥ i strings;

An Example:
S1 = abaabba
S2 = aaababa
S3 = aabaabbb
S4 = aaaabbaa
S5 = bbaaabab

In this case,
l[5] = 3 and the corresponding longest common substring is aab;
l[4] = 3 and the corresponding longest common substring is aab;
l[3] = 4 and the corresponding longest common substring is aabb;
l[2] = 6 and the corresponding longest common substring is aaabab.

Claim : We can solve this in O(Mn) time, where M =
∑k

i=1 |Si|.

Here is an Algorithm:

1) Construct a GST Q on S1, S2, . . . , Sk. This will take O(M) time;
2) For every node v in Q compute c[v] as the number of distinct strings

represented in the leaves of the subtree rooted at v; An algorithm for
computing these value is given below.

3) for 2 ≤ i ≤ n do
Do a traversal on Q to identify the node v such that c[v] = i and the
string depth of v is the largest. Let q[i] = the string depth of v.

This step will take O(Mn) time;
4) Output l[n], l[n−1], . . . , l[2] as the prefix maxima of q[n], q[n−1], . . . , q[2].

This step will take O(n) time.

Computing c[] values:
To compute c[] values use a bit array uv[1 : n], for every node v in Q.
for every node v in Q do

If v is a leaf, then set uv[i] = 1 if v has a label corresponding to a suffix
of Si; otherwise set uv[i] = 0;

If v is an internal node, then, compute uv[1 : n] as the boolean OR of the
bit arrays of its children.

For any node v ∈ Q, we can get c[v] as the number of ones in uv[1 : n]. The
total time taken is O(Mn).

3

Problem 8: All pairs suffix-prefix problem
Input : Strings S1, S2, . . . , Sk;
Output : ∀i, j output the length of the largest suffix of Si that is a prefix

of Sj .

An Example:
S1 = aababbaabbb
S2 = babaaaaba

In this example, the longest suffix of S2 that is a prefix of S1 is aaba. The
longest suffix of S1 that is a prefix of S2 is b.

An interesting application for this problem is in de novo sequence assembly.

Claim : We can solve this problem in O(M + n2) time, where M =
∑n

i=1 |Si|.

Proof : We offer an algorithm. Construct a GST Q on S1, S2, . . . , Sk.

Definition : Let an edge be terminal if it is labeled with $ with one end point
being a leaf.

For every Sj there is a leaf in Q labeled (j,1), the path from the root to this
leaf corresponding to Sj , 1 ≤ j ≤ n.

(To be continued)

4

