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Suffix trees are used in a variety of contexts 

E.g., in the analysis of sequences (of different kinds). 
 
ALL PAIRS SUFFIX-PREFIX PROBLEM 
PROBLEM: 

INPUT: S1, S2, …, Sn. 
OUTPUT: ∀i,j: the longest suffix of Si that is a prefix of Sj 

 
An important application is in de novo sequence assembly. The input to this 
problem will be subsequences (called reads) from a genomic sequence. The goal is 
to construct the genomic sequence from the reads. In order to do this reconstruction 
we need overlap information among the reads. We can represent the overlaps in a 
graph, where each node corresponds to a read. Two nodes will be connected by an 
edge if the two reads have a sufficient overlap. Once this graph is constructed we 
can traverse through the graph looking for long paths. Ideally, we would like to see 
a path going through every node (but this may not happen).  
 

The size of the output is O(n2). 

FACT: We can solve this problem in O(M+n2) time, where M = .S |∑
n

i=1
| i  

PROOF: An algorithm - construct a generalized suffix tree Q on S1, S2, ... , Sn. 
This takes O(M) time. For any j, there is a path in Q for Sj.  
We call an edge a TERMINAL if it is labeled with $. 



 
 

 
 
The path label of u is a suffix of Si. Also, the path label of u is a prefix of Sj. 
If from among all such nodes u has the largest string depth, then the path label of u 
is the largest suffix of Si that is a prefix of Sj. 
 
For every u ∈ Q, define L(u) as: 

i ∈ L(u) if u has a terminal edge corresponding to a suffix of Si. 
 
For every u we can compute L(u) in one traversal through the tree. The maximum 
time spent at each node is proportional to the degree of the node. The sum is 
therefore all the edges, and we have a runtime of O(n). 
 
Do one more depth-first search (DFS) through the tree. Keep n STACKS, one for 
each Si where 1 ≤ i ≤ n. 
 
When node u is visited in the FORWARD DIRECTION, push u into stack i for ∀i 
∈ L(u). 

If we visit a leaf labelled (j,1), the path from the root to this node 
corresponds to the entire string Sj. When we reach a leaf labeled (j,1) for any j, the 
top of stack i has the information about the longest suffix of Si that is a prefix of Sj, 
1 ≤ i ≤ n. Specifically, if u is on top of stack i, then the path label of u is the longest 
suffix of Si, which is a PREFIX of Sj. 



 
 

∀j ∃ label (j,1) → only one traversal 
 
If a stack k is empty, it means that there is no suffix of Sk that is a prefix of Sj.  

When we visit the node u in the reverse direction, we pop the top of stack i 
for ∀i ∈ L(u). 

Outputting all such pairs will take O(n2+M) time. 
 
SUFFIX ARRAYS 
While suffix trees are easier for visualizing algorithms, there is an issue if the 
alphabet is large. In a pattern search, we match characters in the desired pattern 
with the corresponding characters in a tree. 
 
Consider a large alphabet Σ. How will we look for an edge in the suffix tree that 
starts with the specific character x? This can be done in unit time if we have a bit 
array of size |Σ| at each node, where Σ is the alphabet. There will be an index in this 
array corresponding to every character in the alphabet. If this node has a child and 
the edge to this child has a label starting with a character c, then the corresponding 
entry in the bit array will be 1. For example, let Σ ={a, b, c, d, e, f, g}. If a node has 
only two children and if the corresponding edge labels start with the characters c 
and e, respectively, then the bit array for this node will be:  
 
a b c d e         f              g 

0 0 1 0 1 0 0 

↓ 
... 

 
This approach calls for a memory of ⊖(M|Σ|), where M=|T|, T being the input text. 
Alternatively, if we can use O(M) memory if we are willing to spend more time at 
each node. For example, if the children of any node are ordered based on the first 
characters of the edge labels, then we can do a binary search at each node to locate 
a character of interest. In this case, the time needed to perform a string match will 



 
 

be O(n log (|Σ|)).  In summary, either we require more memory or more time for 
larger alphabets.  
 
Suffix arrays circumvent this problem entirely. Suffix arrays are arrays of integers. 
Let S = a1 a2 … an be any string from an alphabet Σ. 
 
We can define a lexical ordering among the suffixes of S. The suffix array of S is 
an array of SA[1:n] such that SA[i] is the starting position in S of the ith smallest 
suffix of S. 
 
Example: S = a a g c c g t t a g a c (where a<c<g<t) 

     1  2   3    4   5   6  7  8  9  10  11 12 

 

i SA[i] Suffix 

1 1 aagccgttagac 

2 11 ac 

3 9 agac 

4 2 agccgttagac 

5 12 c 

6 4 ccgttagac 

7 5 cgttagac 

8 10 gac 

9 3 gccgttagac 

10 6 gttagac 

11 8 tagac 

12 7 ttagac 
 



 
 

FACT: We can construct a suffix array in O(n) TIME on any string of length n. 
PROOF: Construct a suffix tree on S in O(n) TIME. Followed by this, do a lexical 
DFS on Q. At any node, always use the next edge with the least starting character. 
In this case, the leaves will be visited in lexical order. 
 
STRING MATCHING 

INPUT: a text T = t1 t2 … tm and a pattern P = p1 p2 … pm. 
OUTPUT: all the occurrences of P in T. 
 
CLAIM: We can use a suffix array to solve this problem. 
 
IDEA: Do a BINARY SEARCH using the array. (The principle of a binary 

search is basically the same as a normal binary search except that here a 
comparison involves the comparison between two strings.) 

 
 
TIME needed for the binary search = O(n log m) where O(log m) is the number of 
comparisons, and each comparison involves up to n character comparisons. 
 
CLAIM: We can do pattern matching in O(n+log m) TIME. 



 
 

PROOF: 

 
where M = ⌊(L+R)/2⌋. 
 
In the binary search we always work with an interval [L, R], where L and R are 
two suffixes of the text T. L and R are the starting positions in T of two suffixes. 
To begin with L=1 and R=m. The pattern P falls is between L and R. As the binary 
search dictates, P will be compared next with the suffix M where M=⌊(L+R)/2⌋. 
As the binary search progresses, the range [L, R] shrinks further and further. 
 
Let l be the length of the longest common prefix of L and P.  
Let r be the length of the longest common prefix between P and R.  
Let mlr = Min{l, r} and let MLR = Max{l, r}. 
 
If l>r, then, the first r characters will be the same for all the suffixes L through R. 
So, when we compare P with M, we can start the comparison from position mlr+1. 
This observation already will improve the binary search time nicely in practice. If 
we can ensure that we always compare P with M starting from position MLR+1, 
then we can show that the time needed is O(n+ log m). We’ll show this in the next 
lecture. 


