

CSE 4502/5717 Big Data Analytics with Dr. Sanguthevar Rajasekaran
Lecture #13, 3/19/2018 Notes from Katherine Riedling

Suffix trees are used in a variety of contexts

E.g., in the analysis of sequences (of different kinds).

ALL PAIRS SUFFIX-PREFIX PROBLEM
PROBLEM:

INPUT: S1, S2, …, Sn.
OUTPUT: ∀i,j: the longest suffix of Si that is a prefix of Sj

An important application is in de novo sequence assembly. The input to this
problem will be subsequences (called reads) from a genomic sequence. The goal is
to construct the genomic sequence from the reads. In order to do this reconstruction
we need overlap information among the reads. We can represent the overlaps in a
graph, where each node corresponds to a read. Two nodes will be connected by an
edge if the two reads have a sufficient overlap. Once this graph is constructed we
can traverse through the graph looking for long paths. Ideally, we would like to see
a path going through every node (but this may not happen).

The size of the output is O(n2).

FACT: We can solve this problem in O(M+n2) time, where M = .S |∑
n

i=1
| i

PROOF: An algorithm - construct a generalized suffix tree Q on S1, S2, ... , Sn.
This takes O(M) time. For any j, there is a path in Q for Sj.
We call an edge a TERMINAL if it is labeled with $.

The path label of u is a suffix of Si. Also, the path label of u is a prefix of Sj.
If from among all such nodes u has the largest string depth, then the path label of u
is the largest suffix of Si that is a prefix of Sj.

For every u ∈ Q, define L(u) as:

i ∈ L(u) if u has a terminal edge corresponding to a suffix of Si.

For every u we can compute L(u) in one traversal through the tree. The maximum
time spent at each node is proportional to the degree of the node. The sum is
therefore all the edges, and we have a runtime of O(n).

Do one more depth-first search (DFS) through the tree. Keep n STACKS, one for
each Si where 1 ≤ i ≤ n.

When node u is visited in the FORWARD DIRECTION, push u into stack i for ∀i
∈ L(u).

If we visit a leaf labelled (j,1), the path from the root to this node
corresponds to the entire string Sj. When we reach a leaf labeled (j,1) for any j, the
top of stack i has the information about the longest suffix of Si that is a prefix of Sj,
1 ≤ i ≤ n. Specifically, if u is on top of stack i, then the path label of u is the longest
suffix of Si, which is a PREFIX of Sj.

∀j ∃ label (j,1) → only one traversal

If a stack k is empty, it means that there is no suffix of Sk that is a prefix of Sj.

When we visit the node u in the reverse direction, we pop the top of stack i
for ∀i ∈ L(u).

Outputting all such pairs will take O(n2+M) time.

SUFFIX ARRAYS
While suffix trees are easier for visualizing algorithms, there is an issue if the
alphabet is large. In a pattern search, we match characters in the desired pattern
with the corresponding characters in a tree.

Consider a large alphabet Σ. How will we look for an edge in the suffix tree that
starts with the specific character x? This can be done in unit time if we have a bit
array of size |Σ| at each node, where Σ is the alphabet. There will be an index in this
array corresponding to every character in the alphabet. If this node has a child and
the edge to this child has a label starting with a character c, then the corresponding
entry in the bit array will be 1. For example, let Σ ={a, b, c, d, e, f, g}. If a node has
only two children and if the corresponding edge labels start with the characters c
and e, respectively, then the bit array for this node will be:

a b c d e f g

0 0 1 0 1 0 0

↓
...

This approach calls for a memory of ⊖(M|Σ|), where M=|T|, T being the input text.
Alternatively, if we can use O(M) memory if we are willing to spend more time at
each node. For example, if the children of any node are ordered based on the first
characters of the edge labels, then we can do a binary search at each node to locate
a character of interest. In this case, the time needed to perform a string match will

be O(n log (|Σ|)). In summary, either we require more memory or more time for
larger alphabets.

Suffix arrays circumvent this problem entirely. Suffix arrays are arrays of integers.
Let S = a1 a2 … an be any string from an alphabet Σ.

We can define a lexical ordering among the suffixes of S. The suffix array of S is
an array of SA[1:n] such that SA[i] is the starting position in S of the ith smallest
suffix of S.

Example: S = a a g c c g t t a g a c (where a<c<g<t)

 1 2 3 4 5 6 7 8 9 10 11 12

i SA[i] Suffix

1 1 aagccgttagac

2 11 ac

3 9 agac

4 2 agccgttagac

5 12 c

6 4 ccgttagac

7 5 cgttagac

8 10 gac

9 3 gccgttagac

10 6 gttagac

11 8 tagac

12 7 ttagac

FACT: We can construct a suffix array in O(n) TIME on any string of length n.
PROOF: Construct a suffix tree on S in O(n) TIME. Followed by this, do a lexical
DFS on Q. At any node, always use the next edge with the least starting character.
In this case, the leaves will be visited in lexical order.

STRING MATCHING

INPUT: a text T = t1 t2 … tm and a pattern P = p1 p2 … pm.
OUTPUT: all the occurrences of P in T.

CLAIM: We can use a suffix array to solve this problem.

IDEA: Do a BINARY SEARCH using the array. (The principle of a binary

search is basically the same as a normal binary search except that here a
comparison involves the comparison between two strings.)

TIME needed for the binary search = O(n log m) where O(log m) is the number of
comparisons, and each comparison involves up to n character comparisons.

CLAIM: We can do pattern matching in O(n+log m) TIME.

PROOF:

where M = ⌊(L+R)/2⌋.

In the binary search we always work with an interval [L, R], where L and R are
two suffixes of the text T. L and R are the starting positions in T of two suffixes.
To begin with L=1 and R=m. The pattern P falls is between L and R. As the binary
search dictates, P will be compared next with the suffix M where M=⌊(L+R)/2⌋.
As the binary search progresses, the range [L, R] shrinks further and further.

Let l be the length of the longest common prefix of L and P.
Let r be the length of the longest common prefix between P and R.
Let mlr = Min{l, r} and let MLR = Max{l, r}.

If l>r, then, the first r characters will be the same for all the suffixes L through R.
So, when we compare P with M, we can start the comparison from position mlr+1.
This observation already will improve the binary search time nicely in practice. If
we can ensure that we always compare P with M starting from position MLR+1,
then we can show that the time needed is O(n+ log m). We’ll show this in the next
lecture.

