with Dr. Sanguthevar Rajasekaran Notes from Katherine Riedling

Recap: Suffix trees can occupy a lot of space when the alphabet size is large. Suffix arrays require less space and less time for construction.

PATTERN-MATCHING USING A SUFFIX ARRAY:

INPUT: $\mathrm{T}=\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{m}}$

$$
\mathrm{P}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}
$$

OUTPUT: occurrences of P in T .
IDEA: Construct a suffix array $\operatorname{SA}[1: \mathrm{m}]$ for the next T.
Conduct a binary search with respect to the suffixes as shown here:

We start comparing P with the suffix starting from position $\mathrm{SA}[\mathrm{m} / 2]$. If there is a match, we look for other matches for P in the neighborhood of $\mathrm{SA}[\mathrm{m} / 2]$. After outputting all the matches, we stop. If there is no match of P with the suffix starting at $\mathrm{SA}[\mathrm{m} / 2]$, and P is larger than the suffix starting at $\mathrm{SA}[\mathrm{m} / 2]$ then the search continues in the interval $\mathrm{SA}[\mathrm{m} / 2+1, \mathrm{~m}]$; otherwise the search continues in the interval SA[1: $(\mathrm{m} / 2)-1]$. In the following figure, we assume that $\mathrm{SA}[\mathrm{m} / 2]=\mathrm{q}$.

This binary search on SA[1:m] takes $\mathrm{O}(\mathrm{n} \log \mathrm{m})$ time.

Claim: We can do pattern-matching in $\mathrm{O}(\mathrm{n}+\log \mathrm{m})$ time. Proof:

Let $\mathrm{M}=\left\lfloor\frac{L+R}{2}\right\rfloor$. By suffix i we mean the suffix that starts at position in T. We also refer to the suffix starting from position i in T as S_{i}. At any time in the binary search, we have a range $[\mathrm{L}, \mathrm{R}]$ within which P is known to fall (if at all). P will be compared next with the suffix M.

We always keep the length 1 of the longest common prefix of L and P; we also keep the length r of the longest common prefix of P and R. Let $m l r=\operatorname{Min}\{1, r\}$ and let MLR $=\operatorname{Max}\{1, \mathrm{r}\}$. Note that when P is compared with the suffix M it suffices to start comparing from position mlr+1. In practice, this observation could improve the performance significantly. If we can always start comparing from position MLR +1 , that will be even better!

For any two integers i and j, let LCP (i, j) be the length of the longest common prefix of S_{i} and S_{j}. Assume that this information can be obtained in constant time $\forall \mathrm{i}, \mathrm{j}$. We'll later show how to construct a data structure for doing this.
$S_{i} \rightarrow$ suffix $t_{i} \mathrm{t}_{\mathrm{i}+1} \ldots \mathrm{t}_{\mathrm{m}}$.
$\mathrm{S}_{\mathrm{j}} \rightarrow \operatorname{suffix} \mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}+1} \ldots \mathrm{t}_{\mathrm{m}}$.
Example: $\mathrm{T}=\mathrm{a} a \mathrm{a} a \mathrm{~b} b \mathrm{~b} a \mathrm{a} a \mathrm{baba}$
$\operatorname{LCP}(2,6)=0$.
$\operatorname{LCP}(1,8)=2$.
$\operatorname{LCP}(1,9)=5$.
Case 1: $1=\mathrm{r}$.
In this case, compare P with M starting from position MLR +1 because if $1=r$ then the first 1 characters will be the same for all the suffixes L through R.

Case 2: $1>\mathrm{r}$.
Case 2a: $\operatorname{LCP}(L, M)>1$:
We set $\mathrm{L}=\mathrm{M}$;
Move onto the next step in binary search.
Case 2b: LCP(L,M) $<$ 1:
In this case, P is between L and M ;
Set $\mathrm{R}=\mathrm{M}, \mathrm{r}=\mathrm{LCP}(\mathrm{L}, \mathrm{M})$. Proceed to the next step in binary search.
(In essence we simply reset boundaries.)

Case 2c: $\operatorname{LCP}(L, M)=1$:
In this case, compare P and M starting from position MLR+1.

Case 3: $1<\mathrm{r}$.

SIMILAR TO CASE 2.
Analysis: In the algorithm, in any step, we

1) Terminate the search;
2) We do not do any character comparisons; OR
3) We start comparisons in M from position MLR+1.

We call a character comparison in P redundant if this character has already been compared with a character of T.

In any step of the algorithm, if we compare P with M starting from position MLR+1, this comparison might have been done in a previous step. But the characters starting from position MLR+2 would not have been compared before.

This means that there is at most one redundant comparison per step.
Therefore, the RUN TIME is $\mathrm{O}(\mathrm{n}+\log \mathrm{m})$.

CONSTRUCTION of the LCP Values:

Consider a complete binary tree whose ROOT is $(1, \mathrm{~m})$. Any node (i, j) in the tree will have two children: $\left(\mathrm{i},\left\lfloor\frac{i+j}{2}\right\rfloor\right)$ and $\left(\left\llcorner\frac{i+j}{2}\right\rfloor, \mathrm{j}\right)$.

To do binary search in SA[1:m], we only need the LCP values corresponding to every node in this tree.

An example tree for $m=8$ is shown below:

Computing LCP(i,i+1):

Do a lexical depth-first search in the suffix tree for T .
Let u be the node closest to the root that is visited between S_{i} and $\mathrm{S}_{\mathrm{i}+1}$.

The string depth of u is $\operatorname{LCP}(i, i+1)$ for any i. This takes $\mathrm{O}(\mathrm{M})$ time.

Claim: For any $\mathrm{j}>(\mathrm{i}+1), \operatorname{LCP}(\mathrm{i}, \mathrm{j})=\mathrm{Min}_{\mathrm{k}=\mathrm{i}}^{\mathrm{j}-1}$ (LCP(k,k+1)).

PROOF:
$\operatorname{LCP}(\mathrm{i}, \mathrm{j}) \leq \operatorname{Min}^{\mathrm{j}-1}{ }_{\mathrm{k}=\mathrm{i}}(\operatorname{LCP}(\mathrm{k}, \mathrm{k}+1))$
\qquad
$\stackrel{L}{ } \stackrel{\mathrm{q} \rightarrow 1}{\mathrm{i}+1}$
$\stackrel{i \leftarrow q \rightarrow 1}{i+2}$
$\underset{\sim}{\dddot{-q} \rightarrow 1}$ j
Notice that the first " q " characters must all be the same, where $\mathrm{q}=\mathrm{Min}^{j-1}{ }_{\mathrm{k}=\mathrm{i}}$ (LCP(k,k+1)).
$\operatorname{LCP}(\mathrm{i}, \mathrm{j}) \geq \operatorname{Min}^{\mathrm{j}-1}{ }_{\mathrm{k}=\mathrm{i}}(\operatorname{LCP}(\mathrm{k}, \mathrm{k}+1)):$

Proven by induction.
CLAIM: We can construct a suffix array in $\mathrm{O}(\mathrm{M})$ time without constructing a suffix tree.

In 2003, the following teams created algorithms that support this claim: Kärkkäinen and Sanders
Ko and Aluru
Kim, Kim, Park, and Park

The SKEW ALGORITHM of Kärkkäinen and Sanders

Let $T=t_{0} t_{1} t_{2} \ldots t_{\mathrm{m}-1}$
Assume that $\mathrm{m}=3 \mathrm{q}$ for some integer q .
The basic idea is to recursively sort $(2 / 3) \mathrm{m}$ of the suffixes, to sort the remaining $(1 / 3) \mathrm{m}$ of the suffixes using the above sorted list, and merge the two sorted suffix lists.
We will finish this algorithm in the next class.

