

CSE 4502/5717 Big Data Analytics with Dr. Sanguthevar Rajasekaran
Lecture #14, 3/26/2018 Notes from Katherine Riedling

Recap: Suffix trees can occupy a lot of space when the alphabet size is large.
Suffix arrays require less space and less time for construction.

PATTERN-MATCHING USING A SUFFIX ARRAY:
INPUT:​ T = t​1​ t​2​ … t​m

 P = p​1​ p​2​ … p​n
OUTPUT:​ occurrences of P in T.

IDEA:​ Construct a suffix array SA[1:m] for the next T.
Conduct a binary search with respect to the suffixes as shown here:

We start comparing P with the suffix starting from position SA[m/2]. If there is a
match, we look for other matches for P in the neighborhood of SA[m/2]. After
outputting all the matches, we stop. If there is no match of P with the suffix starting
at SA[m/2], and P is larger than the suffix starting at SA[m/2] then the search
continues in the interval SA[m/2+1, m]; otherwise the search continues in the
interval SA[1: (m/2)-1]. In the following figure, we assume that SA[m/2]=q.

This binary search on SA[1:m] takes O(n log m) time.

Claim:​ ​We can do pattern-matching in O(n + log m) time.
Proof:

Let M = ⌊ ⌋. By suffix i we mean the suffix that starts at position i in T. We2

L+R
also refer to the suffix starting from position i in T as S​i​. At any time in the binary
search, we have a range [L, R] within which P is known to fall (if at all). P will be
compared next with the suffix M.

We always keep the length l of the longest common prefix of L and P; we also
keep the length r of the longest common prefix of P and R. Let mlr = Min{l, r} and
let MLR = Max{l, r}. Note that when P is compared with the suffix M it suffices to
start comparing from position mlr+1. In practice, this observation could improve
the performance significantly. If we can always start comparing from position
MLR+1, that will be even better!

For any two integers i and j, let LCP(i,j) be the length of the longest common
prefix of S​i​ and S​j​. Assume that this information can be obtained in constant time
∀i,j. We’ll later show how to construct a data structure for doing this.
S​i​→ suffix t​i​ t​i+1​ … t​m​.
S​j​→ suffix t​j​ t​j+1​ … t​m​.

Example:​ T = a a b a b b b a a a b a b a

 ​1 2 3 4 5 6 7 8 9 10 11 12 13 14

LCP(2,6) = 0.
LCP(1,8) = 2.
LCP(1,9) = 5.

Case 1:​ l = r.
In this case, compare P with M starting from position MLR+1 because if l = r then
the first l characters will be the same for all the suffixes L through R.

Case 2:​ l > r.

Case 2a:​ LCP(L,M) > l:
We set L=M;
Move onto the next step in binary search.

Case 2b:​ LCP(L,M) < l:
In this case, P is between L and M;
Set R=M, r=LCP(L,M). Proceed to the next step in binary search.
(In essence we simply reset boundaries.)

Case 2c:​ LCP(L,M) = l:

In this case, compare P and M starting from position MLR+1.

Case 3: l < r.

SIMILAR TO CASE 2.

Analysis:​ In the algorithm, in any step, we

1) Terminate the search;
2) We do not do any character comparisons; OR
3) We start comparisons in M from position MLR+1.

We call a character comparison in P redundant if this character has already been
compared with a character of T.

In any step of the algorithm, if we compare P with M starting from position
MLR+1, this comparison might have been done in a previous step. But the
characters starting from position MLR+2 would not have been compared before.

This means that there is at most one redundant comparison per step.

Therefore, the RUN TIME is O(n+log m).

CONSTRUCTION of the LCP Values:
Consider a complete binary tree whose ROOT is (1,m). Any node (i,j) in the tree
will have two children: (i, ⌊ ⌋) and (⌊ ⌋, j).2

i+j
2
i+j

To do binary search in SA[1:m], we only need the LCP values corresponding to
every node in this tree.

An example tree for m=8 is shown below:

Computing LCP(i,i+1):
Do a lexical depth-first search in the suffix tree for T.
Let u be the node closest to the root that is visited
between S​i​ and S​i+1​.

The string depth of u is LCP(i,i+1) for any i. This takes
O(M) time.

Claim: ​ For any j>(i+1), LCP(i,j) = Min​j-1​k=i
(LCP(k,k+1)).

PROOF:
LCP(i,j) ≤ Min​j-1​k=i​ (LCP(k,k+1))

Notice that the first “q” characters must all be the same, where q=Min​j-1​k=i
(LCP(k,k+1)).
LCP(i,j) ≥ Min​j-1​k=i​ (LCP(k,k+1)):

Proven by induction.

CLAIM:​ We can construct a suffix array in O(M) time without constructing a
suffix tree.

In 2003, the following teams created algorithms that support this claim:
Kärkkäinen and Sanders
Ko and Aluru
Kim, Kim, Park, and Park

The SKEW ALGORITHM of Kärkkäinen and Sanders
Let T = t​0​ t​1​ t​2​ … t​m-1
Assume that m=3q for some integer q.
The basic idea is to recursively sort (⅔)m of the suffixes, to sort the remaining
(⅓)m of the suffixes using the above sorted list, and merge the two sorted suffix
lists.
We will finish this algorithm in the next class.

