CSE 4502/5717 Big Data Analytics with Dr. Sanguthevar Rajasekaran
Lecture #14, 3/26/2018 Notes from Katherine Riedling

Recap: Suffix trees can occupy a lot of space when the alphabet size is large.
Suffix arrays require less space and less time for construction.

PATTERN-MATCHING USING A SUFFIX ARRAY:
INPUT: T=t,t, ... t,

P=p,p,... Py
OUTPUT: occurrences of Pin T.

IDEA: Construct a suffix array SA[1:m] for the next T.

Conduct a binary search with respect to the suffixes as shown here:
SA
1
2
3

mEd q

We start comparing P with the suffix starting from position SA[m/2]. If there is a
match, we look for other matches for P in the neighborhood of SA[m/2]. After
outputting all the matches, we stop. If there is no match of P with the suffix starting
at SA[m/2], and P is larger than the suffix starting at SA[m/2] then the search
continues in the interval SA[m/2+1, m]; otherwise the search continues in the
interval SA[1: (m/2)-1]. In the following figure, we assume that SA[m/2]=q.

| p1 p2 pn |
! t1t2..,tqtq+1,..tq+r1-1,,, !

This binary search on SA[1:m] takes O(n log m) time.

Claim: We can do pattern-matching in O(n + log m) time.
Proof:

Let M =L &2 | By suffix i we mean the suffix that starts at position i in T. We

also refer to the suffix starting from position1in T as S;. At any time in the binary
search, we have a range [L, R] within which P is known to fall (if at all). P will be
compared next with the suffix M.

L — | —]
| P
|
|
M |
|
[
|
| P
R —r—|

We always keep the length 1 of the longest common prefix of LL and P; we also
keep the length r of the longest common prefix of P and R. Let mlr = Min{l, r} and
let MLR = Max{l, r}. Note that when P is compared with the suffix M it suffices to
start comparing from position mlr+1. In practice, this observation could improve
the performance significantly. If we can always start comparing from position
MLR+1, that will be even better!

For any two integers 1 and j, let LCP(1,)) be the length of the longest common
prefix of S; and S;. Assume that this information can be obtained in constant time
V1,). We’ll later show how to construct a data structure for doing this.

S— suffixtt, ...t
S— suffix t ¢, ... t

m*

m*

Example: T=aababbbaaababa

1 234 567 891011121314

LCP(2,6) = 0.

LCP(1,8)=2.
LCP(1,9)=5.
Case 1:1=r.

In this case, compare P with M starting from position MLR+1 because if 1 = r then
the first I characters will be the same for all the suffixes L through R.

Case 2: 1>r.

Case 2a: LCP(LM) > I:
We set L=M,;
Move onto the next step in binary search.

Case 2b: LCP(LM) < :
In this case, P is between L and M;
Set R=M, r=LCP(L,M). Proceed to the next step in binary search.
(In essence we simply reset boundaries.)

L P
| P
[
|
M I
L My
!
I
| P
R :—I’—}l

Case 2¢c: LCP(LM) =1:
In this case, compare P and M starting from position MLR+1.

L — —|
| P

|

M '

LCP{L.M)—
P

R r —
Case 3:1<r.
SIMILAR TO CASE 2.

Analysis: In the algorithm, in any step, we
1) Terminate the search;
2) We do not do any character comparisons; OR
3) We start comparisons in M from position MLR+1.

We call a character comparison in P redundant if this character has already been
compared with a character of T.

In any step of the algorithm, if we compare P with M starting from position
MLR+1, this comparison might have been done in a previous step. But the
characters starting from position MLR+2 would not have been compared before.

This means that there is at most one redundant comparison per step.
Therefore, the RUN TIME is O(n+log m).

CONSTRUCTION of the LCP Values:
Consider a complete binary tree whose ROOT is (I,m). Any node (i,)) in the tree
will have two children: (i, L 5 1) and (L & 1, j).

To do binary search in SA[1:m], we only need the LCP values corresponding to
every node in this tree.

An example tree for m=8 is shown below:

- \\
-
(1.4) \\ (4.8)
/ VAN
.rjf \ / \\
(1,2) (2,4) (4,6) (6.8)
" /
/| AN /1
(1,1) (1.2) (2,3)(3.4) (4.5) (5.6) (6,7)(7.8)
Computing LCP(i,i+1): O _%om

Do a lexical depth-first search in the suffix tree for T.
Let u be the node closest to the root that is visited

\

between S, and S, ;. @

The string depth of u is LCP(1,1+1) for any 1. This takes S < .

O(M) time. O IQ
S, S.,

Claim: For any j>(i+1), LCP(i,j) = Min'"',_,

(LCP(k,k+1)).

PROOF:

LCP(i,j) < Min™',_, (LCP(k,k+1))

l—g—l i

l—q—| i+1

[+ —+| i+2

l—gq—l i

Notice that the first “q” characters must all be the same, where g=Min'""',
(LCP(k,k+1)).
LCP(i,j) > Min™'_; (LCP(k,k+1)):

LCPiiLi+2)

i+1

i+2

Proven by induction.

CLAIM: We can construct a suffix array in O(M) time without constructing a
suffix tree.

In 2003, the following teams created algorithms that support this claim:
Kérkkainen and Sanders
Ko and Aluru
Kim, Kim, Park, and Park

The SKEW ALGORITHM of Kirkkiinen and Sanders
LetT=t,tt,...t_,
Assume that m=3q for some integer q.

The basic idea is to recursively sort (¥3)m of the suffixes, to sort the remaining
(Y5)m of the suffixes using the above sorted list, and merge the two sorted suffix
lists.

We will finish this algorithm in the next class.

