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Recap: Suffix trees can occupy a lot of space when the alphabet size is large. 
Suffix arrays require less space and less time for construction. 
 
PATTERN-MATCHING USING A SUFFIX ARRAY: 
INPUT:​ T = t​1​ t​2​ … t​m 

    P = p​1​ p​2​ … p​n 
OUTPUT:​ occurrences of P in T. 
 
IDEA:​ Construct a suffix array SA[1:m] for the next T.  
Conduct a binary search with respect to the suffixes as shown here: 

 
 
We start comparing P with the suffix starting from position SA[m/2]. If there is a 
match, we look for other matches for P in the neighborhood of SA[m/2]. After 
outputting all the matches, we stop. If there is no match of P with the suffix starting 
at SA[m/2], and P is larger than the suffix starting at SA[m/2] then the search 
continues in the interval SA[m/2+1, m]; otherwise the search continues in the 
interval SA[1: (m/2)-1]. In the following figure, we assume that SA[m/2]=q. 

 
This binary search on SA[1:m] takes O(n log m) time.  



 
 

 
 
Claim:​ ​We can do pattern-matching in O(n + log m) time. 
Proof: 
 
Let M = ⌊ ⌋. By suffix i we mean the suffix that starts at position i in T. We2

L+R  
also refer to the suffix starting from position i in T as S​i​. At any time in the binary 
search, we have a range [L, R] within which P is known to fall (if at all). P will be 
compared next with the suffix M. 
 

 
 
We always keep the length l of the longest common prefix of L and P; we also 
keep the length r of the longest common prefix of P and R. Let mlr = Min{l, r} and 
let MLR = Max{l, r}. Note that when P is compared with the suffix M it suffices to 
start comparing from position mlr+1. In practice, this observation could improve 
the performance significantly. If we can always start comparing from position 
MLR+1, that will be even better! 
 
For any two integers i and j, let LCP(i,j) be the length of the longest common 
prefix of S​i​ and S​j​. Assume that this information can be obtained in constant time 
∀i,j. We’ll later show how to construct a data structure for doing this. 
S​i​→ suffix t​i​ t​i+1​ … t​m​. 
S​j​→ suffix t​j​ t​j+1​ … t​m​. 
 
Example:​ T = a a b a b b b a a a b a b a 

  ​1    2   3   4    5   6   7   8  9  10  11 12 13 14 



 
 

LCP(2,6) = 0. 
LCP(1,8) = 2. 
LCP(1,9) = 5. 
 
Case 1:​ l = r. 
In this case, compare P with M starting from position MLR+1 because if l = r then 
the first l characters will be the same for all the suffixes L through R. 
 
Case 2:​ l > r. 

Case 2a:​ LCP(L,M) > l: 
We set L=M;  
Move onto the next step in binary search.  

Case 2b:​ LCP(L,M) < l: 
In this case, P is between L and M; 
Set R=M, r=LCP(L,M). Proceed to the next step in binary search. 
(In essence we simply reset boundaries.) 

 
Case 2c:​ LCP(L,M) = l: 

In this case, compare P and M starting from position MLR+1. 



 
 

 
Case 3: l < r. 

SIMILAR TO CASE 2. 
 
Analysis:​ In the algorithm, in any step, we 

1) Terminate the search; 
2) We do not do any character comparisons; OR 
3) We start comparisons in M from position MLR+1. 

 
We call a character comparison in P redundant if this character has already been 
compared with a character of T. 
 
In any step of the algorithm, if we compare P with M starting from position 
MLR+1, this comparison might have been done in a previous step. But the 
characters starting from position MLR+2 would not have been compared before. 
 
This means that there is at most one redundant comparison per step. 

Therefore, the RUN TIME is O(n+log m). 
 
CONSTRUCTION of the LCP Values: 
Consider a complete binary tree whose ROOT is (1,m). Any node (i,j) in the tree 
will have two children: (i, ⌊ ⌋) and (⌊ ⌋, j).2
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i+j  

 
To do binary search in SA[1:m], we only need the LCP values corresponding to 
every node in this tree. 
 
An example tree for m=8 is shown below: 



 
 

 
 
Computing LCP(i,i+1): 
Do a lexical depth-first search in the suffix tree for T. 
Let u be the node closest to the root that is visited 
between S​i​ and S​i+1​.  
 
The string depth of u is LCP(i,i+1) for any i. This takes 
O(M) time. 

 
Claim: ​ For any j>(i+1), LCP(i,j) = Min​j-1​k=i 
(LCP(k,k+1)). 
 
PROOF:  
LCP(i,j) ≤ Min​j-1​k=i​ (LCP(k,k+1)) 

 
Notice that the first “q” characters must all be the same, where q=Min​j-1​k=i 
(LCP(k,k+1)). 
LCP(i,j) ≥ Min​j-1​k=i​ (LCP(k,k+1)): 



 
 

 
Proven by induction. 
 
CLAIM:​ We can construct a suffix array in O(M) time without constructing a 
suffix tree. 
 

In 2003, the following teams created algorithms that support this claim: 
Kärkkäinen and Sanders 
Ko and Aluru 
Kim, Kim, Park, and Park 

 
The SKEW ALGORITHM of Kärkkäinen and Sanders 
Let T = t​0​ t​1​ t​2​ … t​m-1 
Assume that m=3q for some integer q. 
The basic idea is to recursively sort (⅔)m of the suffixes, to sort the remaining 
(⅓)m of the suffixes using the above sorted list, and merge the two sorted suffix 
lists. 
We will finish this algorithm in the next class. 


