

CSE 4502/5717: Big Data Analytics
Lecture 15: 3/28/18

In this lecture we’ll present the linear time algorithm of (Kärkäinen and Sanders 2003)
for the construction of the suffix array for any given input string.

Let T = t0 t1 ... tm-1 be the given input string.
For k = 0, 1, and 2 define Bk = {i ∈ [0, m] : i mod 3 = k}
Let B = B1 ∪ B2.
Let Si stand for the suffix of T starting at position i, for 0 ≤ i ≤ m-1.
Let Sc denote the collection of suffixes Sj for each j ∈ C, where C ⊆ [0, m-1].

Algorithm:
1. Sort the suffixes SB; Let this sorted sequence be Q;
2. Using the order obtained in step 1, sort the suffixes 𝑆"# to get Q′;
3. Merge Q with Q′;

Note: It suffices to assume that ∑ = [1, m]. This is because if the size of the alphabet is
larger than m, we can sort the characters in the input and replace each character with its
rank in the sorted list.

Let
 R1 = [t1 t2 t3] [t4 t5 t6] ... [tm-2 tm-1 0] and

R2 = [t2 t3 t4] [t5 t6 t7] ... [tm-1 0 0]

In this string, each substring of length 3 enclosed within square brackets is thought of as
a single super character. Any such super character is an integer in the range 1,𝑚' .

Example:

Position t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

T = 5 2 1 4 3 3 1 5 3 4 4 1

1. R1 = [2 1 4] [3 3 1] [5 3 4] [4 1 0]
 R2 = [1 4 3] [3 1 5] [3 4 4] [1 0 0]

Construct the string R = R1 R2. In the above example,

R = [2 1 4] [3 3 1] [5 3 4] [4 1 0] [1 4 3] [3 1 5] [3 4 4] [1 0 0]

Observation: The relative ordering of the suffixes in R is the same as the relative
ordering of the suffixes in 𝑆".

1a. Sort the super characters in R using radix sort in linear time and replace each super
character with its rank in the sorted list. As a result, each super character is replaced

with an integer in the range [1, |R|]. If the characters in R are now distinct, we are done
with sorting SB.

Rank 3 5 8 7 2 4 6 1

R = 2 1 4 3 3 1 5 3 4 4 1 0 1 4 3 3 1 5 3 4 4 1 0 0

1b. If the characters in R are not distinct, then recursively sort the suffixes in the
resultant string (where each character is an integer in the range [1, |R|]).

2. To sort 𝑆"#:
Let rank(Si) be the rank (among the suffixes in SB) of the suffix Si where i ∈ B.
Note: Sj ≤ Sk where j, k ∈ B0 if and only if (tj, rank(Sj+1)) ≤ (tk, rank(Sk+1))
 Example1: S3 ≤ S0 since (4, 5) ≤ (5, 3)
 Example2: S3 ≤ S9 since (4, 5) ≤ (4, 7)
To sort 𝑆"#, sort pairs of the form (tj, rank(Sj+1)) for j ∈ B0 using integer sort. This takes
O(m) time.

3. Merging Q and Q′:
Let Si and Sj be two suffixes such that Si ∈ B0 and Sj ∈ B1 or B2

 Case 1: Sj ∈ B1
 Si ≤ Sj if and only if (ti, rank(Si+1)) ≤ (tj, rank(Sj+1))
 Case 2: Sj ∈ B2
 Si ≤ Sj if and only if (ti, ti+1, rank(Si+2)) ≤ (tj, tj+1, rank(Sj+2))

Let T(m) be the RUN TIME of this algorithm on any string of length m.

Then, T(m) = T(⅔ m) + O(m) = O(m).

Note: This algorithm is known as the skew algorithm (since the split is not ½, ½).

