CSE 4502/5717: Big Data Analytics Lecture 15: 3/28/18

In this lecture we'll present the linear time algorithm of (Kärkäinen and Sanders 2003) for the construction of the suffix array for any given input string.

Let $T=t_{o} t_{1} \ldots t_{m-1}$ be the given input string.
For $k=0,1$, and 2 define $B_{k}=\{i \in[0, m]: i \bmod 3=k\}$
Let $B=B_{1} \cup B_{2}$.
Let S_{i} stand for the suffix of T starting at position i, for $\mathrm{o} \leq i \leq m-1$.
Let S_{c} denote the collection of suffixes S_{j} for each $j \in C$, where $C \subseteq[\mathrm{o}, m-1]$.
Algorithm:

1. Sort the suffixes S_{B}; Let this sorted sequence be Q;
2. Using the order obtained in step 1, sort the suffixes $S_{B_{0}}$ to get Q^{\prime};
3. Merge Q with Q^{\prime};

Note: It suffices to assume that $\sum=[1, m]$. This is because if the size of the alphabet is larger than m, we can sort the characters in the input and replace each character with its rank in the sorted list.

Let

$$
\begin{aligned}
& R_{1}=\left[t_{1} t_{2} t_{3}\right]\left[t_{4} t_{5} t_{6}\right] \ldots\left[t_{m-2} t_{m-1} O\right] \text { and } \\
& R_{2}=\left[t_{2} t_{3} t_{4}\right]\left[t_{5} t_{6} t_{7}\right] \ldots\left[t_{m-1} O O\right]
\end{aligned}
$$

In this string, each substring of length 3 enclosed within square brackets is thought of as a single super character. Any such super character is an integer in the range [1, m^{3}].

Example:

Position	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}
$T=$	5	2	1	4	3	3	1	5	3	4	4	1

1. $\quad \mathrm{R}_{1}=\left[\begin{array}{lll}2 & 1 & 4\end{array}\right]\left[\begin{array}{lll}3 & 3 & 1\end{array}\right]\left[\begin{array}{lll}5 & 3 & 4\end{array}\right]\left[\begin{array}{lll}4 & 1 & 0\end{array}\right]$

$$
\mathrm{R}_{2}=\left[\begin{array}{lll}
1 & 4 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 5
\end{array}\right]\left[\begin{array}{lll}
3 & 4 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

Construct the string $R=R_{1} R_{2}$. In the above example,
$\mathrm{R}=\left[\begin{array}{lll}2 & 1 & 4\end{array}\right]\left[\begin{array}{lll}3 & 3 & 1\end{array}\right]\left[\begin{array}{lll}5 & 3 & 4\end{array}\right]\left[\begin{array}{lll}4 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]\left[\begin{array}{lll}3 & 1 & 5\end{array}\right]\left[\begin{array}{lll}3 & 4 & 4\end{array}\right]\left[\begin{array}{lll}1 & 0 & o\end{array}\right]$
Observation: The relative ordering of the suffixes in R is the same as the relative ordering of the suffixes in S_{B}.

1a. Sort the super characters in R using radix sort in linear time and replace each super character with its rank in the sorted list. As a result, each super character is replaced
with an integer in the range $[1,|R|]$. If the characters in R are now distinct, we are done with sorting S_{B}.

Rank	3	5	8	7	2	4	6	1
$R=$	214	331	534	410	143	315	344	100

1 b . If the characters in R are not distinct, then recursively sort the suffixes in the resultant string (where each character is an integer in the range $[1,|R|]$).
2. To sort $S_{B_{0}}$:

Let $\operatorname{rank}\left(S_{i}\right)$ be the rank (among the suffixes in S_{B}) of the suffix S_{i} where $i \in B$.
Note: $S_{j} \leq S_{k}$ where $j, k \in B_{o}$ if and only if $\left(t_{j}, \operatorname{rank}\left(S_{j+1}\right)\right) \leq\left(t_{k}, \operatorname{rank}\left(S_{k+1}\right)\right)$
Example1: $S_{3} \leq S_{o}$ since $(4,5) \leq(5,3)$
Example2: $S_{3} \leq S_{9}$ since $(4,5) \leq(4,7)$
To sort $S_{B_{0}}$, sort pairs of the form $\left(t_{j}, \operatorname{rank}\left(S_{j+1}\right)\right)$ for $j \in B_{o}$ using integer sort. This takes $\mathrm{O}(\mathrm{m})$ time.
3. Merging Q and Q^{\prime} :

Let S_{i} and S_{j} be two suffixes such that $S_{i} \in B_{o}$ and $S_{j} \in B_{1}$ or B_{2}
Case 1: $S_{j} \in B_{1}$
$S_{i} \leq S_{j}$ if and only if $\left(t_{i}, \operatorname{rank}\left(S_{i+1}\right)\right) \leq\left(t_{j}, \operatorname{rank}\left(S_{j+1}\right)\right)$
Case 2: $S_{j} \in B_{2}$

$$
S_{i} \leq S_{j} \text { if and only if }\left(t_{i}, t_{i+1}, \operatorname{rank}\left(S_{i+2}\right)\right) \leq\left(t_{j}, t_{j+1}, \operatorname{rank}\left(S_{j+2}\right)\right)
$$

Let $T(m)$ be the RUN TIME of this algorithm on any string of length m.
Then, $T(m)=T(2 / 3 m)+O(m)=O(m)$.
Note: This algorithm is known as the skew algorithm (since the split is not $1 / 2,1 / 2$).

