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Machine learning is the task of inferring a function, e.g., f : ℝ" → ℝ$. This 

inference has to be made using a series of examples. An example is nothing but a pair 

of the form (x, y), where xÎℝ" and yÎℝ$ and y=f(x). The examples constitute the 
training data for machine learning. 

 

Convention: Lowercase bold letters (such as x and y) will be used to denote vectors 

and boldface capital letters (such as A) will be used to denote matrices. 

 

A simple example: 

 Assume that the function f is a degree k polynomial.  

 f : ℝ	 → ℝ 

 f = akxk + ak-1xk-1 + … + a1x + a0 

If we know the value of the polynomial at (k+1) distinct points, we can uniquely 

determine f(.) by interpolating. 

 

In practice we may not know the form of the function and also there could be errors. 

In practice we guess the form of the function. Each such possible function will be 

called a model and characterized by some parameters. 

 

We choose parameter values that will minimize the difference between the model 

outputs & the true function values. 

 

MITCHELL (1997) : 

 A computer program is said to be learning to perform a set T of tasks from 

experience E under some performance measure P, if its performance with respect to 

the tasks in T improves with E. 

 

There are two kinds of learning: supervised & unsupervised. 

In supervised learning we are given a set of examples (x, y) and the goal is to infer 

the predicting conditional probability distribution P(y| x). 

In unsupervised learning the goal is to predict a data generating distribution P(x) 

after observing many random vectors x from this distribution. 



 

Capacity of a model: 

 A machine learning algorithm builds a model from the input training data. We 

can measure the accuracy of the model with respect to the training data. The 

corresponding error (i.e., the difference between the model and desired outputs) will 

be called the training error. 

 A machine learning algorithm will also be tested on data points previously 

unseen. These unseen data points used to test the algorithm will be referred to as the 

test data. We can define a corresponding test error. 

 A model is said to underfit if its training error is not low enough. A model is said 

to overfit if the difference between the training and test error is very large. In this case 

the model memorizes the properties of the training data closely. We can modify the 

underfitting and overfitting behavior of a learning algorithm by changing the capacity 

with a low capacity tends to underfit and a model with a high capacity tends to 

overfit. 

 

(Goodfellow, et al. 2016) have generated data from a quadratic function and used 

three different models to fit the data. These three models were degree 1, degree 2, and 

degree 9 polynomials, respectively. The results they got are shown below: 

 

The performance of a model is optimal when its capacity is close to the complexity of 

the function learned. 

 

No free lunch theorem (WOLPERT 1996):  

 When averaged over all possible data generating distributions, each classifier has 

the same error rate on previously unseen data points. We can develop better 



algorithms if we restrict the functions of interest and/or we have more information on 

the data generating distribution. 

 

Example: 

Linear regression: is one of the simple models we can think of. This model fits the 

data with a linear function. 

 

Let f = ℝ$ → ℝ be any function, a linear regression model takes the form: 

f(x) = w1x1 + w2x2 + … + wnxn. Here x = (x1, x2, …, xn)T. Let w = (w1, w2, …, wn)T. 

 

Input : m examples. 

Output: w = (w1, w2, …, wn)T. 

Let the examples be E1, E2,…. Em, where Ei = (xi
1, xi

2,… ,xi
n, yi ), with yi = f(xi

1, 

xi
2,… ,xi

n ), 1	≤	i	≤ 𝑚.  

Let 𝑦) be the output of the model on input xi = (xi
1, xi

2,… , xi
n ). 

Estimation error = *
"

(	𝑦) −	𝑦-)/"
-0* .   This is called the mean squared error 

(MSE). 

𝑦) = w1xi
1 + w2 xi

2+ … + wn xi
n. 

Goal : Determine w = 

𝑤*
𝑤/
.
.
.
𝑤$

 that minimizes the MSE. 

Gradient Descent: 

 Consider a function f = ℝ → ℝ. Say we want to find argmin9 f(x). 

f (x+𝜀)	≅	f(x)+ 𝜀	𝑓’(x), where f’(x) = =>
=9

.  

Note: f(x – 𝜀	sign	𝑓′(𝑥)) < f(x), for any small 𝜀. 
When f’(x) = 0, then x is a stationary point. A stationary point could be a (local) 

minimum, a (local) maximum, or a saddle point. 

 



 
    max    min    saddle point 

 

Example: 

 f(x) = 5x2 – 10x +7 

 =>
=9

 = 10x – 10 = 0, if x = 1. 

=B>
=B9

 = 10 =>  x = 1 is minimum. 

 

Definition: 

 Let y = (y1, y2, …, ym)T and x = (x1, x2, …, xn), then we define the gradient of y 

with respond to x, denote as ∇𝒙𝒚 ( or FG
F𝒙

) = 

FGH
F9H

	FGH
F9B

. . . FGH
F9I

FGB
F9H

	FGB
F9B

. . . FGB
F9I...

FGJ
F9H

	FGJ
F9B

. . . FGJ
F9I

 

 

∇𝒙𝒚 corresponds to a stationary point if each entry in the matrix is 0. 

 

Some facts: 

1. Let y = Ax, where y is m×	1, A is m×	𝑛, and x is n×	1. Then F𝒚
F𝒙
= A. 

This is because yi = ai1x1+ ai2x2+ … + ainxn, 
FGO
F9P

 = aij , ∀i,j 

2. Let y = Ax, where y is m×	1, A is m×	𝑛, and x is n×	1, A is independent of x and 

y and x is a function of z then  F𝒚
F𝒛

 =  F𝒚
F𝒙

 ∙ F𝒙
F𝒛

 = A	∙ F𝒙
F𝒛

. 

3. Let α = 𝒚UA x , then FV
F𝒙

 = 𝒚U	A  and FV
F𝒚

 = xT AT. 

Note: 𝒚WA x = xTATy. 



4. If α = xTA x, then FV
F𝒙
= xT ( A+AT). 

5. If α = xTA x and if A is symmetric, them FV
F𝒙
= 2xTA. 

Linear Regression: 

We are required to minimize the MSE (i.e., we have to minimize *
"

(	𝑦) −	𝑦-)/"
-0* . 

Let X =

𝑥**	𝑥*/. . . 𝑥*$

𝑥/*	𝑥//. . . 𝑥/$.
.
.

𝑥"* 	𝑥"/ . . . 𝑥"$

   w = 

𝑤*
𝑤/
.
.
.
𝑤$

 . In this case, Xw = 

𝑦*
𝑦/
.
.
.
𝑦"

. 

We have to minimize  *
"

	𝑿𝑾− 𝒚 /
/. The plan is to set ∇𝒘 MSE = 0 

=> *
"
∇𝒘 	𝑿𝑾− 𝒚 /

/ = 0. 

To be continued. 


