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A General Neural Network: 

 

Let 𝑛" be the number of neurons in level k, 1 ≤ 𝑘 ≤ 𝐿. 

There could be a connection from every node in level (𝑘 − 1) to every node in level k, 1 ≤ 𝑘 ≤
𝐿. 

Let the weight of the edge from node i of level (𝑘 − 1) to node j of level k be denote as 𝑤,-". 

Let the output of node j in level k be denoted as 𝑎,". 𝑎," = 𝜎 𝑤,-"
1234
-56 𝑎-"76 + 𝑏," , where 

𝜎 → 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. Let 𝑧," = 𝑤,-"
1234
-56 𝑎-"76 + 𝑏,". 𝑧," is the weighted input for the node 

j in level k. 

Possible Activation Functions: 

1.Sigmoid Function: 𝜎 𝑥 = 6
6FG3H

  



 

The sigmoid function can be thought of as an approximation to the step function： 

  

2.Rectilinear Function: 𝜎 𝑥 = max 0, 𝑥  

  

 



3. Softmax Function:  

𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝒛 𝒊 =
𝒆𝒛𝒊
𝒆𝒛𝒋𝒋

, 𝒘𝒉𝒆𝒓𝒆	𝒛	𝒊𝒔	𝒂	𝒗𝒆𝒄𝒕𝒐𝒓. 

We compute optimal values for the network parameters using gradient descent. 

Let C be any cost function on 𝑥6, 𝑥^, 𝑥_, … 𝑥a. If we change the parameter values by 
∆𝑥6, ∆𝑥^, …	∆𝑥a, the change in C = ∆𝐶 = de

df4
∆𝑥6 +

de
dfg

∆𝑥^ + ⋯
de
dfi

∆𝑥a. Let	𝒙 =

(𝑥6, 𝑥^, . . 𝑥a)m. 

∇𝒙𝐶 =

𝜕𝐶
𝜕𝑥6
⋮
𝜕𝐶
𝜕𝑥a

, ∆𝐶 = (∆𝑥6	∆𝑥^ …	∆𝑥a)	. ∇𝒙𝐶 

If ∆𝒙 = 	−𝛼∇𝒙𝐶, then ∆𝐶 = −𝛼 ∇𝒙𝐶 m ∇𝒙𝐶 = −𝛼 ∇𝒙𝐶 ^
^ which will always be negative. The 

idea of gradient descent is to choose this value for ∆𝒙. 

We can think of an iterative algorithm for minimizing C: 

1. Start with some initial value for x; Let this value be 𝒙𝟎; 
2. Compute 𝐶(𝑥s) and ∇𝒙𝐶, let 𝒙𝟏 = 𝒙𝟎 − 𝛼∇𝒙𝐶 
3. Repeat step 2 until the gradient becomes zero or close to zero. 

𝛼	is	called	the	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒; 

In the case of a Neural Network, let 𝑤6, 𝑤^, … , 𝑤a be the list of parameters, C could be the MSE. 

We’ll use gradient decent to update each parameter, i.e., 𝑤- = 𝑤- − 𝛼
de
d��

, ∀	𝑖. 

Let 𝐶f be the cost for example x, we can compute C as 6
�

𝐶ff . We can also compute ∇C	as  
6
�

∇C�f .  

If m is large, it will take a very long time before the parameters are updated. An alternative is to 
use Stochastic Gradient Descent. We pick a random sample S of examples & the gradient can be 
computed using the sample. Once the gradient is computed, we can update the parameters.  

We’ll compute C as 6
|�|

𝐶ff∈�  and ∇f𝐶 as 6
|�|

∇𝐶ff∈� . Make updates using these values. We’ll 

repeat this for other samples from the input.  

Each subset is a mini batch. 

When we end up using all the examples in the input once, we have completed an epoch. In fact, 
we can, in any epoch, shuffle the input examples randomly and partition the input into several 
mini batches. In the epoch, we will process each of the mini batches exactly once.  

We may repeat the epochs. 

 When |S| = 1, we call it as online or incremental learning. 



Training:  

An Epoch: 

For every Mini Batch do: 

Compute the activation values for each node in each layer starting from the input layer 
and ending at the output. This is one forward propagation. Followed by this, compute de

d��
 

for every parameter 𝑤-. 

Compute ∇𝐶	&	𝐶, and update the parameter values. 

Forward propagation: 

 

Assume that we have already computed 𝑎,�76 for 1 ≤ 𝑗 ≤ 𝑛�76. I.e., we have computed the 
activation values for every node in level (l-1). 

 We’ll see how to compute the activation values for every node in level l. I.e., we’ll see how to 
compute 𝑎,� for 1 ≤ 𝑗 ≤ 𝑛�. 

1. Compute 𝑧-� = 𝑤,-�
1234
,56 𝑎,�76 + 𝑏-�. For every 1 ≤ 𝑖 ≤ 𝑛�. 

2. Compute 𝑎-� = 𝜎(𝑧-�) 

Let 𝑾𝒍 =
𝑤66� ⋯ 𝑤61234

�

⋮ ⋱ ⋮
𝑤126
� ⋯ 𝑤121234

�
	and	𝒛𝒍 = (𝑧6� 	𝑧^� 	⋯	𝑧12

� )m  

We can see that	𝑧� = 𝑾� ∙ 𝒂�76 + 𝒃�. 𝑤ℎ𝑒𝑟𝑒	𝒂�76 = 𝑎6�76		𝑎^�76 … 	𝑎1234
�76 m

&	𝒃� =

𝑏6� 	𝑏^� … 	𝑏12
� m

. 

Computation of 𝒛�	involves	the	computation	of	a	matrix	of	size	 𝑛�×
𝑛�76 	and	a	vector	of	size	 𝑛�76×1 . 

As a result, the time spent at level l to compute 𝒛� = 𝑂 𝑛�76𝑛� + 𝑛� + 𝑛� = 𝑂 𝑛�76𝑛� . 



This means that the total time taken for forward propagation = 𝑂 𝑛��
�5^ 𝑛�76 . 

If	𝑛� = 𝑛 ∀𝑙, then	the	forward	propagation	time	is	O 𝑛^𝐿  

Let the indegree of the node i at level l be 𝐷-�.  

The time to compute 𝒛-� is 𝑂 𝐷-� ; the time to compute 𝑎-� is 𝑂 𝐷-� . 

Therefore, the time to compute 𝒂� is O 𝐷-�
12
-56 = 𝑂 𝐸� , where	𝐸� = the number of edges 

coming into level l. 

Total time for forward propagation is 𝑂( 𝐸 + |𝑉|), where G(V,E) is the Neural Network.  

The next step is to compute the gradient. 

Let C be any function to be optimized and w be the vector of parameters. We can approximate the 

partial derivative of C with respect to any parameter 𝑤- as de
d��

≈ e 𝒘F¤𝒆𝒊 7e(𝒘)
¤

,  

where 𝒆- =

0
0
0
⋮
1
0
0

	(the	value	of	the		𝑖¥¦	entry	is	one). 

This takes one forward propagation for every 𝑤- and hence the time taken will be too much! 

FACT: We can compute the gradient in one backward propagation through the network starting 
from level L & progressing one level at a time. This will be shown in the next lecture. 

 

 


