

CSE 4502/5717 Big Data Analytics with Dr. Sanguthevar Rajasekaran
Lecture #19, 4/9/2018 Notes from Katherine Riedling

Recap: A generic neural network (NN)

The activation value at node j of level k is
denoted as ajk . Let the number of nodes in
level k be nk . The weighted input for node j
of level k is denoted as zjk, for all j and k.

 ajk = σ(zjk)=σ(Σi=1

nk-1wjikaik-1).
We can use a matrix-vector multiplication to
get ajk , for every j. We demonstrated this last
time.

If ak = a , ,) ,(1

k a2
k · · · , ank

k T

and =W k

then ak = Wkak-1+bk

Total time taken in the forward propagation =

or O(|V|+|E|), if our neural network G(V,E) is sparse.

COMPUTING THE GRADIENT
We make two primary assumptions as follows:

1. The cost function can be summed over examples, i.e.,

2. C is a function of aL.

Plan: First compute for every 2≤l≤L and for every i, 1≤i≤nl.

∂C
∂zi

l

Followed by this, compute and for∂C

∂bi
l

∂C
∂wik

every i, k, l. We start from level L and proceed
towards level 2.

1. = Σk=1
nL (= X∂C

∂zi
L

∂C
∂ak

L)∂zi
L

∂ak
L ∂C

∂ai
L

= = ∂zi
L

∂ai
L ∂C

∂ai
L ∂zi

L
∂σ(z)i

L
∂C
∂ai

L (z)σ′ i
L

------ (1) ------

Let . Assume that we have computed 𝛿jl+1 for 1≤j≤n(l+1). We’ll now∂C

∂zi
l = δi

l

show how to compute 𝛿il for every i, 1≤i≤nl.

= Σk=1
nl+1 (∂C

∂zi
l

∂C
∂zk

l+1)∂zi
l

∂zk
l+1

----(A) ----

zkl+1= Σj=1

nl wkj
l+1ajl + bkl+1 = Σj=1

nl
wkj

l+1σ(zjl) + bkl+1 . Thus,

 = ------ (B) -------∂zi
l

∂zk
l+1

σ (z)wki
l+1 ′ i

l

Substitute (B) in (A):

=) ------ (2) ------∂C
∂zi

l σ (z Σδk
l+1

* wki
l+1

′ i
l

) is easy to compute if we know what activation function is used.(zσ′ i

l
Equation (2) can be thought of as a matrix multiplication.

We see that: where is the Hadamard multiplication andW) δ (z) δl = (l+1 T l+1 ⊙ σ′ l ⊙

= . δl δ , ,)(1
l δ2

l · · · , δnl

l T
If Anxn and Bnxn are matrices, then A B =⊙

Time needed to compute = O(n1nl+1) (given). → We δl δl+1
can compute zil ∀l and all i in O(Σl=2

L-1 nlnl+1) time.

If Dil is the out-degree of node i at level l, we can compute:

in O(Dil) TIME. → total time for computing (for∂C
∂zi

l δl

every l) = O(|V|+|E|) where G(V,E) is the NN.

3. = = ∂C
∂bi

l
∂C
∂zi

l
∂zi

l

∂bi
l δi

l ∂zi
l

∂bi
l

Zi

l = Σj=1
nl-1 wijlajl-1 + bil

= 1 → = ----- (3) -----

∂zi
l

∂bi
l

∂C
∂bi

l δi
l

= = ----- (4) -----∂C
∂wik

∂C
∂zi

l
∂zi

l

∂wik
a δi

l
k

l−1

Put together, the entire back propagation takes O(|E|+|V|) time. We can also
employ matrix-vector multiplication in back propagation.
The entire process of training a feed forward network can be summarized as
follows:

INPUT: examples E1, E2, …, Em.
OUTPUT: a NN model

1. Determine the values for the hyperparameters:
a. Number of layers
b. Number of neurons/nodes in each layer
c. Edges
d. Number of epochs

e. Learning rate
f. Minibatch size
g. (Note that these are determined empirically.)

2. TRAIN the network:

For every EPOCH do
Shuffle the input and partition the input into minibatches;
For every minibatch do

Do a forward propagation;
Do a backward propagation;
Compute for every parameter w;∂w

∂C
If the gradient is close to 0, STOP;
Compute the average value of over the examples in the minibatch;∂w

∂C
Update the parameter values by using the gradient;
w = w - for every parameter w;α ∂w

∂C

Total run time = O(qm(|V|+|E|)) where q = # of epochs

(M.Nielson 2017) has employed the above algorithm for the recognition of
handwritten digits.

Nielson constructed a neural network with one input layer, one hidden layer,
and one output layer. There were thirty neurons in the hidden layer. The MNIST
dataset has been employed for training as well as testing. The MNIST data has
60,000 examples and 10,000 test points:

Input layer size: 784 nodes, one node per pixel. Each example has an image
of size (28*28);

Output layer size: 10 nodes (one for each possible digit)
Hidden layer size: 30 neurons
Number of epochs: 30
α = 3
Minibatch size: 10

He got an accuracy of 95.34%.

When the number of neurons in the hidden layer was increased to 100, the
accuracy became 96.59%.

When
α = 0.001, the accuracy decreased dramatically to 11.39%.
For α = 100, the accuracy was even lower at 10.09%.

The conclusion drawn from this experiment was that there is no analysis one could
use to figure out optimal values for the hyperparameters. Fine-tuning the values of
these parameters is an empirical task. Trial and error dominates this exercise.

Next time we will have a brief introduction to different types of NNs and visit
techniques for improving the test accuracy.

