with Dr. Sanguthevar Rajasekaran Notes from Katherine Riedling

Recap: A generic neural network (NN)

If $\boldsymbol{a}^{\boldsymbol{k}}=\left(a_{1}{ }^{k}, a_{2}{ }^{k}, \cdots, a_{n_{k}}{ }^{k}\right)^{T}$,
and $W^{k}=$

The activation value at node j of level k is denoted as $a_{j}{ }^{k}$. Let the number of nodes in level k be n_{k}. The weighted input for node j of level k is denoted as z_{j}^{k}, for all j and k.

$$
a_{j}^{k}=\sigma\left(z_{j}^{k}\right)=\sigma\left(\sum_{i=1}^{n_{k}-l} w_{j i}^{k} a_{i}^{k-1}\right) .
$$

We can use a matrix-vector multiplication to get a_{j}^{k}, for every j. We demonstrated this last time.

Total time taken in the forward propagation $=$

$$
\mathrm{O}\left(\sum_{k 2}^{L} n_{k-1} n_{k}\right) .
$$

or $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$, if our neural network $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is sparse.

COMPUTING THE GRADIENT

We make two primary assumptions as follows:

1. The cost function can be summed over examples, i.e.,

$$
C=\sum_{x} C_{x}
$$

2. C is a function of \boldsymbol{a}^{L}.

Plan: First compute $\frac{\partial C}{\partial z_{i}^{l}}$ for every $2 \leq l \leq L$ and for every $i, l \leq i \leq n_{l}$.

	Activation value at node k is not dependent on the weighted input of any other node in the	Followed by this, compute $\frac{\partial C}{\partial b_{i}^{l}}$ and $\frac{\partial C}{\partial w_{i k}}$ for towards level 2.
same level. It only depends on the inputs	$1 . \quad \frac{\partial C}{\partial z_{i}{ }^{L}}=\Sigma_{\mathrm{k}=1} \mathrm{n}_{\mathrm{L}}\left(\frac{\partial C}{\partial a_{k}{ }^{L}} \frac{\partial a_{k}{ }^{L}}{\partial z_{i}{ }^{L}}\right)=\frac{\partial C}{\partial a_{i}^{L}} \mathrm{X}$	
coming into this node.	$\frac{\partial a_{i}^{L}}{\partial z_{i}^{L}}=\frac{\partial C}{\partial a_{i}^{L}} \frac{\partial \sigma\left(z_{i}^{L}\right)}{\partial z_{i}^{L}}=\frac{\partial C}{\partial a_{i}^{L}} \sigma^{\prime}\left(z_{i}^{L}\right)$	

Let $\frac{\partial C}{\partial z_{i}{ }^{l}}=\delta_{i}{ }^{l}$. Assume that we have computed $\delta_{\mathrm{j}}{ }^{1+1}$ for $l \leq j \leq n_{(l+1)}$. We'll now show how to compute δ_{i}^{l} for every $i, 1 \leq i \leq n_{l}$.

$\begin{array}{ll}\text { Let } k \text { be any } & \frac{\partial C}{\partial z_{i}^{l}}=\sum_{\mathrm{k}=1}^{\mathrm{n}_{l+1}}\left(\frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{i}^{l}}\right) \\ \text { nodel in level } /+1 ; & ---(\mathrm{A}) \text {---- }\end{array}$ level I, i affects all the nodes in level $1+1$. So we keep the summation in

$$
z_{k}^{l+1}=\sum_{j=1}^{n_{l}} w_{k j}^{l+1} a_{j}^{l}+b_{k}^{l+1}=\sum_{j=1}^{n_{l}}
$$ equation (A) as is and cannot delete any term.

$$
\begin{equation*}
\frac{\partial z_{k}^{l+1}}{\partial z_{i}^{l}}=w_{k i}^{l+1} \sigma^{\prime}\left(z_{i}^{l}\right) \tag{B}
\end{equation*}
$$

Substitute (B) in (A):

$$
\frac{\partial C}{\partial z_{i}^{l}}=\Sigma \delta_{k}^{l+1} * w_{k i}^{l+1} \sigma^{\prime}\left(z_{i}^{l}\right)
$$

$\sigma^{\prime}\left(z_{i}^{l}\right)$ is easy to compute if we know what activation function is used.
Equation (2) can be thought of as a matrix multiplication.
We see that: $\delta^{l}=\left(W^{l+1}\right)^{T} \delta^{l+1} \odot \sigma^{\prime}\left(z^{l}\right)$ where \odot is the Hadamard multiplication and $\delta^{l}=\left(\delta_{1}{ }^{l}, \delta_{2}{ }^{l}, \cdots, \delta_{n_{l}}\right)^{T}$.
If $A_{n x n}$ and $B_{n x n}$ are matrices, then $A \odot B=$

$$
\begin{array}{llll}
a_{11} b_{11} & a_{12} b_{12} & \cdots & a_{1 n} b_{1 n} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
a_{n 1} b_{n 1} & a_{n 2} b_{n 2} & \cdots & a_{n n} b_{n n}
\end{array}
$$

Time needed to compute $\delta^{l}=\mathrm{O}\left(n_{l} n_{l+1}\right)\left(\right.$ given $\left.\delta^{l+1}\right) . \rightarrow$ We can compute $z_{i}^{l} \forall l$ and all i in $\mathrm{O}\left(\sum_{l=2}^{\mathrm{L}-1} n_{l} n_{l+1}\right)$ time.

If D_{i}^{l} is the out-degree of node i at level l, we can compute: $\frac{\partial C}{\partial z_{i}^{l}}$ in $\mathrm{O}\left(D_{i}^{l}\right)$ TIME. \rightarrow total time for computing δ^{l} (for every $l)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ where $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is the NN .

$$
\text { 3. } \frac{\partial C}{\partial b_{i}^{l}}=\frac{\partial C}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial b_{i}^{l}}=\delta_{i}^{l} \frac{\partial z_{i}^{l}}{\partial b_{i}^{l}}
$$

$$
z_{i}^{l}=\Sigma_{j=1}{ }^{n_{L-l}} w_{i j}^{l} a_{j}^{l-l}+b_{i}^{l}
$$

$$
\begin{equation*}
\frac{\partial z_{i}^{l}}{\partial b_{i}^{l}}=1 \rightarrow \frac{\partial C}{\partial b_{i}^{l}}=\delta_{i}^{l}---- \text { (3) ----- } \tag{4}
\end{equation*}
$$

$$
\frac{\partial C}{\partial w_{i k}}=\frac{\partial C}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{i k}}=\delta_{i}^{l} a_{k}^{l-1} .
$$

Put together, the entire back propagation takes $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$ time. We can also employ matrix-vector multiplication in back propagation.
The entire process of training a feed forward network can be summarized as follows:

INPUT: examples $E_{1}, E_{2}, \ldots, E_{m}$. OUTPUT: a NN model

1. Determine the values for the hyperparameters:
a. Number of layers
b. Number of neurons/nodes in each layer
c. Edges
d. Number of epochs
e. Learning rate
f. Minibatch size
g. (Note that these are determined empirically.)
2. TRAIN the network:

For every EPOCH do

Shuffle the input and partition the input into minibatches;
For every minibatch do
Do a forward propagation;
Do a backward propagation;
Compute $\frac{\partial C}{\partial w}$ for every parameter w;
If the gradient is close to 0, STOP;
Compute the average value of $\frac{\partial C}{\partial w}$ over the examples in the minibatch; Update the parameter values by using the gradient; $\mathrm{w}=\mathrm{w}-\alpha \frac{\partial C}{\partial w}$ for every parameter w;

Total run time $=\mathrm{O}(q m(|\mathrm{~V}|+|\mathrm{E}|))$ where $q=\#$ of epochs
(M.Nielson 2017) has employed the above algorithm for the recognition of handwritten digits.

Nielson constructed a neural network with one input layer, one hidden layer, and one output layer. There were thirty neurons in the hidden layer. The MNIST dataset has been employed for training as well as testing. The MNIST data has 60,000 examples and 10,000 test points:

Input layer size: 784 nodes, one node per pixel. Each example has an image of size (28*28);

Output layer size: 10 nodes (one for each possible digit)
Hidden layer size: 30 neurons
Number of epochs: 30
$\alpha=3$
Minibatch size: 10
He got an accuracy of 95.34\%.
When the number of neurons in the hidden layer was increased to 100 , the accuracy became 96.59%.

When
$\alpha=0.001$, the accuracy decreased dramatically to 11.39%.
For $\alpha=100$, the accuracy was even lower at 10.09%.
The conclusion drawn from this experiment was that there is no analysis one could use to figure out optimal values for the hyperparameters. Fine-tuning the values of these parameters is an empirical task. Trial and error dominates this exercise.

Next time we will have a brief introduction to different types of NNs and visit techniques for improving the test accuracy.

