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Recap: A generic neural network (NN) 

 
 
The activation value at node ​j ​of level ​k​ is 
denoted as ​a​j​k​ . Let the number of nodes in 
level ​k​ be ​n​k​ . The weighted input for node j 
of level k is denoted as ​z​j​k​, for all ​j ​and ​k​. 
 
       ​ a​j​k​ = σ(z​j​k​ )=σ(Σ​i=1​

n​k​-1​w​ji​k​a​i​k-1​). 
We can use a matrix-vector multiplication to 
get ​a​j​k​ ​, for every ​j​. We demonstrated this last 
time. 
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then ​a​k​ = ​W​k​a​k-1​+​b​k 



 

 
Total time taken in the forward propagation =  

 
or O(|V|+|E|), if our neural network G(V,E) is ​sparse. 
 
COMPUTING THE GRADIENT 
We make two primary assumptions as follows: 

1. The cost function can be summed over examples, i.e.,  

  

 
2. C is a function of ​a​L​.    

 
 
Plan:​ First compute​  ​for every ​2≤l≤L​ and for every ​i, 1≤i≤n​l​.
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Followed by this, compute  and for∂C
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every ​i, k, l​. We start from level ​L ​and proceed 
towards level 2. 
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Let​ . ​Assume that we have computed 𝛿​j​l+1​ for ​1≤j≤n​(l+1)​. We’ll now∂C
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show how to compute ​𝛿​i​l​ for every ​i, 1≤i≤n​l​. 
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z​k​l+1​= ​Σ​j​=1​

n​l​ ​w​kj​
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Substitute (B) in (A): 
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) is easy to compute if we know what activation function is used.(zσ′ i
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Equation (2) can be thought of as a matrix multiplication.  
 
We see that: where  is the Hadamard multiplication andW ) δ (z )  δl = ( l+1 T l+1 ⊙ σ′ l ⊙  
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If ​A​nxn​ and ​B​nxn​ are matrices, then ​A B​ =⊙  

 



 

 
 
 
 
Time needed to compute = O(​n​1​n​l+1​) (given ). → We δl  δl+1  
can compute ​z​i​l​ ​∀​l ​and all ​i​ in O(​Σ​l​=2​

L-1​ ​n​l​n​l+1​)​ time. 
 
If ​D​i​l​ ​is the out-degree of node​ i ​at level ​l,​ we can compute:  

in O(​D​i​l​) TIME.  → total time for computing (for∂C
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every ​l​) = O(|V|+|E|) where G(V,E) is the NN. 
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Put together, the entire back propagation takes O(|E|+|V|) time. We can also 
employ matrix-vector multiplication in back propagation. 
The entire process of training a feed forward network can be summarized as 
follows: 
 
 
INPUT:​ examples ​E​1​, E​2​, …, E​m​. 
OUTPUT:​ a NN model 
 

1. Determine the values for the hyperparameters: 
a. Number of layers 
b. Number of neurons/nodes in each layer 
c. Edges 
d. Number of epochs 



 

e. Learning rate 
f. Minibatch size 
g. (Note that these are determined empirically.) 

 
2. TRAIN the network: 

For​ every EPOCH ​do 
Shuffle the input and partition the input into minibatches; 
For​ every minibatch ​do 

Do a forward propagation; 
Do a backward propagation; 
Compute  for every parameter ​w​;∂w

∂C  
If the gradient is close to 0, STOP; 
Compute the average value of over the examples in the minibatch;∂w

∂C  
Update the parameter values by using the gradient;  
w = w - for every parameter ​w;α ∂w

∂C  
 

Total run time = O(​qm​(|V|+|E|)) where ​q ​= # of epochs 
 
(M.Nielson 2017) has employed the above algorithm for the recognition of 
handwritten digits. 

Nielson constructed a neural network with one input layer, one hidden layer, 
and one output layer. There were thirty neurons in the hidden layer. The MNIST 
dataset has been employed for training as well as testing. The MNIST data has 
60,000 examples and 10,000 test points: 
 

Input layer size: 784 nodes, one node per pixel. Each example has an image 
of size (28*28); 

Output layer size: 10 nodes (one for each possible digit) 
Hidden layer size: 30 neurons 
Number of epochs: 30 
α = 3 
Minibatch size: 10 

 
He got an accuracy of 95.34%. 

When the number of neurons in the hidden layer was increased to 100, the 
accuracy became 96.59%.  
 
 



 

When  
α = 0.001, the accuracy decreased dramatically to 11.39%. 
For α = 100, the accuracy was even lower at 10.09%. 
 

The conclusion drawn from this experiment was that  there is no analysis one could 
use to figure out optimal values for the hyperparameters. Fine-tuning the values of 
these parameters is an empirical task. Trial and error dominates this exercise.  
 
Next time we will have a brief introduction to different types of NNs and visit 
techniques for improving the test accuracy.  
 
   
 


