CSE4502/5717: Big Data Analytics

Prof. Sanguthevar Rajasekaran
Notes by Zigeng Wang (TA)

April $11^{\text {th }}, 2018$

Recap from last class:

When we employ minibatches, we can replace matrix-vector multiplications with matrix-matrix multiplications. Consider the case where each level has n neurons and there is an edge from every neuron in any level to every neuron in the next level. We showed that if the minibatch size is b, then we can compute the activation values of every node in level I (given the activation values from level I-1), with q^{2} matrix multiplications, each involving two $b \times b$ matrices. Here $q=n / b$. Thus,

$$
\text { Total Time }=O\left(q^{2} \cdot b^{2.373}\right)=O\left(\frac{n^{2}}{b^{2}} \cdot b^{2.373}\right)=O\left(n^{2} \cdot b^{0.373}\right)
$$

while the total time for the naïve algorithm is $O\left(n^{2} \cdot b\right)$.

1. To Improve Test Accuracy

1.1 Ensemble Learning

$>$ Use multiple models, the final output will be based on the outputs from the different models.

Example:

Consider k different models for the same input.

- Let ϵ_{i} be the error from model $i, 1 \leq i \leq k$.
- Let ϵ_{i} be generated from zero mean multivariable normal distributions.
- Let the variance for ϵ_{i} be

$$
E\left[\epsilon_{i}\right]=v \quad \text { for } 1 \leq i \leq k
$$

- Also, let

$$
E\left[\epsilon_{i} \epsilon_{j}\right]=c \quad \forall i, j ; i \neq j
$$

One possible way of combining the outputs from the different models is to take an average of the k outputs.

In this case,

$$
\text { the average error }=\frac{1}{k} \sum_{i=1}^{k} \epsilon_{i}
$$

and

$$
\begin{gathered}
\text { Expected squared error }=E\left[\left(\frac{1}{k} \sum_{i=1}^{k} \epsilon_{i}\right)^{2}\right]=\frac{1}{k^{2}}\left[\sum_{i=1}^{k} E\left[\epsilon_{i}^{2}\right]+\sum_{i \neq j} E\left[\epsilon_{i} \epsilon_{j}\right]\right] \\
=\frac{1}{k^{2}}[k \cdot v+k(k-1) \cdot c]=\frac{1}{k} v+\frac{k-1}{k} c
\end{gathered}
$$

- If the errors are perfectly correlated, and $c=v$, then the expected squared error $=v$.
- If the $\epsilon_{i} s$ are perfectly uncorrelated with $c=0$, then the expected squared error $=\frac{1}{k} v$.

Thus, if we can employ many possibly uncorrelated models, we can improve the accuracy. Also, note that the expected squared mean error will not exceed v. In other words, we cannot worsen the accuracy with the employment of multiple models.

Techniques for generating models:

- Bagging (Bootstrap Aggregating)

Here we use the same model but different datasets for training. Given an input data D, we generate new datasets $D_{1}, D_{2}, \ldots, D_{k}$ by sampling from D with replacement such that

$$
|D|=\left|D_{i}\right| \quad \text { for } 1 \leq i \leq k
$$

- Drop-Out

Pick some number of nodes from the neural network randomly and this gives a new neural network (and a model). We can repeat this process k times to get k different models (for a suitable value of k).

Original network

A new network

1.2 Regularization Techniques

- Aim to decrease the test error possibly by increasing the training error.

These are normally used on Point Estimators.

- Point Estimator: A point estimator tries to get the best value for a parameter or a set of parameters.
- Let θ be a parameter of interest.
- Bias in estimating $\theta=E\left[\hat{\theta}_{m}\right]-\theta$, where the expectation is over the input data and θ is the true value.

Example:

- Let X be a Bernoulli variable with mean θ.
- Let $x_{1}, x_{2}, \ldots, x_{m}$ be samples from X.

One estimator for θ could be $\frac{1}{m} \sum_{i=1}^{m} x_{i}$.
The bias in this estimator can be calculated as,

$$
\text { Bias }=E\left[\frac{1}{m} \sum_{i=1}^{m} x_{i}\right]-\theta=\frac{1}{m} \sum_{i=1}^{m} E\left(x_{i}\right)-\theta=\frac{1}{m} \sum_{i=1}^{m}(1 \cdot \theta+0 \cdot(1-\theta))-\theta=\frac{m \cdot \theta}{m}-\theta=0
$$

In this case,

$$
\text { Variance }=\frac{1}{m} \theta(1-\theta)
$$

Note:

- We want to keep both the bias and the variance small.
- Many of the regularization techniques try to decrease the variance by perhaps increasing the bias.

Ways of Regularization:

- Put some constraints on the model parameters and/or
- Add some additional constraints to the loss function.

Let $(\boldsymbol{X}, \boldsymbol{y})$ be the input. A typical loss function is $L(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})$.
We can modify the loss function as

$$
L^{\prime}(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})=L(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})+\lambda \cdot \Omega(\boldsymbol{\theta})
$$

Where $\Omega(\boldsymbol{\theta})$ is the norm of $\boldsymbol{\theta}$.
In the case of linear regression,

$$
\begin{gathered}
L^{\prime}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=L(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})+\lambda \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} \\
\nabla_{\boldsymbol{w}} L^{\prime}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\nabla_{\boldsymbol{w}} L(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})+2 \lambda \boldsymbol{w} \\
\Rightarrow \boldsymbol{w}^{\prime}=\boldsymbol{w}-\alpha\left(\nabla_{\boldsymbol{w}} L(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})+2 \lambda \boldsymbol{w}\right)=(1-2 \alpha \lambda) \boldsymbol{w}-\alpha \nabla_{\boldsymbol{w}} L(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})
\end{gathered}
$$

where α is the learning rate. We note that the parameter \boldsymbol{w} shrinks in every step with a factor of (1$2 \alpha \lambda$).

2. Probability Approximately Correct (PAC) Learning

- Let C be a concept to be learnt.
- Let C^{\prime} be the concept learnt.

We want to make sure that the distance $\left(C, C^{\prime}\right) \leq \epsilon$ with a probability $\geq 1-\delta$.
The learning time is a polynomial in $m, \frac{1}{\epsilon}$ and $\frac{1}{\delta}$, where m is the number of examples.

Example:

The concept is an axes parallel rectangle.

Input will be points (x) within the rectangle.

Output the least rectangle that encloses all the input points.

- The difference between the true concept and the output concept can be characterized with the area missed by the output. Let the fraction of area (shadowed) missed be ϵ.
- Let m be the number of examples.

$$
\operatorname{Prob}[\text { Error fraction is }>\epsilon] \leq(1-\epsilon)^{m}
$$

We want this probability to be $\leq \delta$, so that

$$
\begin{gathered}
(1-\epsilon)^{m} \leq \delta \\
m \log (1-\epsilon) \leq \log (\delta) \\
m \log \left(\frac{1}{(1-\epsilon)}\right) \geq \log \left(\frac{1}{\delta}\right)
\end{gathered}
$$

$$
\Rightarrow m \geq \frac{\log \left(\frac{1}{\delta}\right)}{\log \left(\frac{1}{(1-\epsilon)}\right)} .
$$

Note that our analysis enables us to determine the number of examples needed, for a given ϵ and δ.

Example:

A conjunctive normal form (CNF) Boolean formula is a conjunction of disjunctions. A k-CNF formula is a CNF formula with at most k literals/clause.

- $F=\left(\bar{X}_{2} \vee X_{3}\right) \wedge\left(X_{1} \vee X_{4}\right) \wedge\left(\bar{X}_{2} \vee \bar{X}_{5}\right)$ is a 2-CNF formula.
- A monomial is a 1-CNF formula, like $X_{1} \bar{X}_{2} X_{5} \bar{X}_{7}$.

Fact:

- We can learn a monomial with positive examples.

Proof:

Let $E_{i}=\left(X_{i}^{1}, X_{i}^{2}, \ldots, X_{i}^{n}\right)$ be the $i^{t h}$ example $(1 \leq i \leq m)$

$$
\begin{aligned}
& \text { Start with } F=X_{1} \bar{X}_{1} X_{2} \bar{X}_{2} \ldots X_{n} \bar{X}_{n} \\
& \text { for } 1 \leq i \leq m \text { do } \\
& \qquad \begin{array}{l}
\text { for } 1 \leq j \leq n \text { do } \\
\text { if } X_{i}^{j}=1 \text { then } \\
\text { Eliminate } \bar{X}_{j} \text { from the } F \\
\text { Eliminate } X_{i}^{j}=0 \text { then from the } F \\
\text { end } \\
\text { Output the resultant } F
\end{array}
\end{aligned}
$$

- Let F^{\prime} be the true formula and F be the output formula.
- Let $D(v)$ be a distribution on all possible assignments.

$$
\operatorname{dist}\left(F, F^{\prime}\right)=\sum_{\substack{v \Rightarrow F \text { and } v \nRightarrow F^{\prime} \text { or } \\ v \Rightarrow F^{\prime} \text { and } v \nRightarrow F \\ \Rightarrow \text { means "SATISFIED" }}} D(v)
$$

So that,
Prob[all the m examples fall within a prob.of $(1-\epsilon)]=(1-\epsilon)^{m}$
If we have n variables, then there are no more than $2^{2 n}$ concepts.

$$
\operatorname{Prob}[\text { this happens for at least one concept }] \leq 2^{2 n} \cdot(1-\epsilon)^{m}
$$

We want this to be $\leq \delta$, so that

$$
\begin{gathered}
2^{2 n} \cdot(1-\epsilon)^{m} \leq \delta \\
2 n+m \log (1-\epsilon) \leq \log (\delta)
\end{gathered}
$$

$$
\begin{gathered}
-2 n+m \log \left(\frac{1}{1-\epsilon}\right) \geq \log \left(\frac{1}{\delta}\right) \\
\Rightarrow m \geq \frac{2 n+\log \left(\frac{1}{\delta}\right)}{\log \left(\frac{1}{1-\epsilon}\right)} .
\end{gathered}
$$

3. Association Rules Mining

- Let D be a database $(D B)$ of transactions.
- A transaction is a set of items.
- Let I be the set of all possible items with $|I|=d$.
- Any transaction $t \in D B$ is a subset of I.

We are interested in finding Rules of the form:

$$
X \rightarrow Y \text { where } X \neq \emptyset, Y \neq \emptyset, X \cap Y=\emptyset, X \subseteq I, Y \subseteq I
$$

- An itemset is a subset of I.
- A k-itemset is an itemset with k items.

For any itemset X, let $\sigma(X)$ denote the number of transactions in D that contain X.

- Support for the Rule $X \rightarrow Y$ is $\frac{\sigma(X \cup Y)}{n}$ where $n=|D|$.
- Confidence for the Rule $X \rightarrow Y$ is $\frac{\sigma(X \cup Y)}{\sigma_{(X)}}$.

Problem:

Given minSupport, minConfidence and a database $D B$ of transactions, identify all the Rules $X \rightarrow Y$ for which the support is $\geq \operatorname{minSupport}$ and the confidence is \geq minConfidence.

