
CSE4502/5717:	Big	Data	Analytics	
Prof.	Sanguthevar	Rajasekaran	
Notes	by	Zigeng	Wang	(TA)	

April	11th,	2018	

Recap	from	last	class:	

When	we	employ	minibatches,	we	can	replace	matrix-vector	multiplications	with	matrix-matrix	
multiplications.	Consider	the	case	where	each	level	has	n	neurons	and	there	is	an	edge	from	every	
neuron	in	any	level	to	every	neuron	in	the	next	level.	We	showed	that	if	the	minibatch	size	is	b,	then	we	
can	compute	the	activation	values	of	every	node	in	level	l	(given	the	activation	values	from	level	l-1),	
with	𝑞"	matrix	multiplications,	each	involving	two	𝑏×𝑏	matrices.	Here	q=n/b.	Thus,	

𝑇𝑜𝑡𝑎𝑙	𝑇𝑖𝑚𝑒 = 𝑂 𝑞" ∙ 𝑏".232 = 𝑂
𝑛"

𝑏"
∙ 𝑏".232 = 𝑂 𝑛" ∙ 𝑏5.232 	

while	the	total	time	for	the	naïve	algorithm	is	𝑂 𝑛" ∙ 𝑏 .	

1.	To	Improve	Test	Accuracy	

1.1	Ensemble	Learning	

Ø Use	multiple	models,	the	final	output	will	be	based	on	the	outputs	from	the	different	models.	

Example:	

Consider	𝑘	different	models	for	the	same	input.		

• Let	𝜖8 	be	the	error	from	model	𝑖,	1 ≤ 𝑖 ≤ 𝑘.		
• Let	𝜖8 	be	generated	from	zero	mean	multivariable	normal	distributions.		
• Let	the	variance	for	𝜖8 	be	

𝐸 𝜖8 = 𝑣					𝑓𝑜𝑟	1 ≤ 𝑖 ≤ 𝑘	

• Also,	let		

𝐸 𝜖8𝜖? = 𝑐					∀𝑖, 𝑗; 	𝑖 ≠ 𝑗	

One	possible	way	of	combining	the	outputs	from	the	different	models	is	to	take	an	average	of	the	𝑘	
outputs.	

In	this	case,		
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• If	the	errors	are	perfectly	correlated,	and	𝑐 = 𝑣,	then	the	expected	squared	error		= 𝑣.	
• If	the	𝜖8s	are	perfectly	uncorrelated	with	𝑐 = 0,	then	the	expected	squared	error	= J

H
𝑣.	

Thus,	if	we	can	employ	many	possibly	uncorrelated	models,	we	can	improve	the	accuracy.	Also,	note	
that	the	expected	squared	mean	error	will	not	exceed	v.	In	other	words,	we	cannot	worsen	the	accuracy	
with	the	employment	of	multiple	models.	

Techniques	for	generating	models:	

• Bagging	(Bootstrap	Aggregating)	

Here	we	use	the	same	model	but	different	datasets	for	training.	Given	an	input	data	𝐷,	we	
generate	new	datasets	𝐷J, 𝐷", … , 𝐷H 	by	sampling	from	𝐷	with	replacement	such	that		

𝐷 = 𝐷8 				𝑓𝑜𝑟	1 ≤ 𝑖 ≤ 𝑘	

• Drop-Out	

Pick	some	number	of	nodes	from	the	neural	network	randomly	and	this	gives	a	new	neural	
network	(and	a	model).	We	can	repeat	this	process	k	times	to	get	k	different	models	(for	a	
suitable	value	of	k).	

	

	
	
	
	
	
	
	
	
	
	

	

1.2	Regularization	Techniques	

• Aim	to	decrease	the	test	error	possibly	by	increasing	the	training	error.	

These	are	normally	used	on	Point	Estimators.	
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• Point	Estimator:	A	point	estimator	tries	to	get	the	best	value	for	a	parameter	or	a	set	of	
parameters.	

• Let	𝜃	be	a	parameter	of	interest.	
• Bias	in	estimating	𝜃 = 𝐸 𝜃[ − 𝜃,	where	the	expectation	is	over	the	input	data	and	𝜃	is	the	

true	value.	

Example:		

• Let	𝑋	be	a	Bernoulli	variable	with	mean	𝜃.		
• Let	𝑥J, 𝑥", … , 𝑥[	be	samples	from	𝑋.	

One	estimator	for	𝜃	could	be	 J
[

𝑥8[
8IJ .	

The	bias	in	this	estimator	can	be	calculated	as,	
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In	this	case,	

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1
𝑚
𝜃(1 − 𝜃)	

Note:	

• We	want	to	keep	both	the	bias	and	the	variance	small.	
• Many	of	the	regularization	techniques	try	to	decrease	the	variance	by	perhaps	increasing	the	

bias.	

Ways	of	Regularization:	

• Put	some	constraints	on	the	model	parameters	and/or	
• Add	some	additional	constraints	to	the	loss	function.	

Let	(𝑿, 𝒚)	be	the	input.	A	typical	loss	function	is	𝐿(𝜽; 𝑿, 𝒚).	

We	can	modify	the	loss	function	as		

𝐿b 𝜽; 𝑿, 𝒚 = 𝐿 𝜽; 𝑿, 𝒚 + 𝜆 ∙ Ω(𝜽)	

Where	Ω 𝜽 	is	the	norm	of	𝜽.	

In	the	case	of	linear	regression,	

𝐿b 𝒘; 𝑿, 𝒚 = 𝐿 𝒘;𝑿, 𝒚 + 𝜆𝒘f𝒘	

∇𝒘𝐿b(𝒘; 𝑿, 𝒚) = ∇𝒘𝐿 𝒘; 𝑿, 𝒚 + 2𝜆𝒘	

⇒ 𝒘′ = 𝒘 − 𝛼(∇𝒘𝐿 𝒘; 𝑿, 𝒚 + 2𝜆𝒘) = (1 − 2𝛼𝜆)𝒘 − α∇𝒘𝐿 𝒘;𝑿, 𝒚 	

where	𝛼	is	the	learning	rate.	We	note	that	the	parameter	𝒘	shrinks	in	every	step	with	a	factor	of	(1 −
2𝛼𝜆).	



	

2.	Probability	Approximately	Correct	(PAC)	Learning	

• Let	𝐶	be	a	concept	to	be	learnt.	
• Let	𝐶′	be	the	concept	learnt.	

We	want	to	make	sure	that	the	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐶, 𝐶’ ≤ 𝜖	with	a	probability	≥ 1 − 𝛿.	

The	learning	time	is	a	polynomial	in	𝑚, J
|
	𝑎𝑛𝑑 J

}
,	where	m	is	the	number	of	examples.	

Example:	

The	concept	is	an	axes	parallel	rectangle.	

	

	

	

	

	

Input	will	be	points	(		)	within	the	rectangle.		
	

	

	

	

	

Output	the	least	rectangle	that	encloses	all	the	input	points.	

• The	difference	between	the	true	concept	and	the	output	concept	can	be	characterized	with	the	
area	missed	by	the	output.	Let	the	fraction	of	area	(shadowed)	missed	be	𝜖.	

• Let	𝑚	be	the	number	of	examples.	

𝑃𝑟𝑜𝑏 𝐸𝑟𝑟𝑜𝑟	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑖𝑠 > 𝜖 ≤ 1 − 𝜖 [	

We	want	this	probability	to	be	≤ 𝛿,	so	that		

1 − 𝜖 [ ≤ 𝛿	

𝑚	log 1 − 𝜖 ≤ log 𝛿 	
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⇒ 𝑚 ≥
log 1

𝛿
log 1

1 − 𝜖

.	

Note	that	our	analysis	enables	us	to	determine	the	number	of	examples	needed,	for	a	given	𝜖	and	𝛿.	

Example:	

A	conjunctive	normal	form	(CNF)	Boolean	formula	is	a	conjunction	of	disjunctions.	A	𝑘-CNF	formula	is	a	
CNF	formula	with	at	most	𝑘	literals/clause.		

• 𝐹 = (𝑋" ∨ 𝑋2) ∧ (𝑋J ∨ 𝑋Y) ∧ (𝑋" ∨ 𝑋�)	is	a	2-CNF	formula.	
• A	monomial	is	a	1-CNF	formula,	like	𝑋J𝑋"𝑋�𝑋3.	

Fact:	

• We	can	learn	a	monomial	with	positive	examples.	
Proof:	

Let	𝐸8 = (𝑋8J, 𝑋8", … , 𝑋8�)	be	the	𝑖��	example	(1 ≤ 𝑖 ≤ 𝑚)	

Start	with	𝐹 = 𝑋J𝑋J𝑋"𝑋" …𝑋�𝑋�	
for	1 ≤ 𝑖 ≤ 𝑚	do	
	 for	1 ≤ 𝑗 ≤ 𝑛	do	
	 	 if	𝑋8

? = 1	then	
	 	 	 Eliminate	𝑋?from	the	𝐹	
	 	 					elseif	𝑋8

? = 0	then	
	 	 	 Eliminate	𝑋?from	the	𝐹	
	 													end	
	 end	
end	
Output	the	resultant	𝐹	

• Let	𝐹′	be	the	true	formula	and	𝐹	be	the	output	formula.	
• Let	𝐷(𝑣)	be	a	distribution	on	all	possible	assignments.	

𝑑𝑖𝑠𝑡 𝐹, 𝐹b = 𝐷(𝑣)
�⇒�	���	�⇏����
�⇒��	���	�⇏�

⇒[����	"���������"

	

So	that,	
𝑃𝑟𝑜𝑏 𝑎𝑙𝑙	𝑡ℎ𝑒	𝑚	𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠	𝑓𝑎𝑙𝑙	𝑤𝑖𝑡ℎ𝑖𝑛	𝑎	𝑝𝑟𝑜𝑏. 𝑜𝑓	 1 − 𝜖 = 1 − 𝜖 [	

If	we	have	n	variables,	then	there	are	no	more	than	2"�	concepts.	

𝑃𝑟𝑜𝑏[𝑡ℎ𝑖𝑠	ℎ𝑎𝑝𝑝𝑒𝑛𝑠	𝑓𝑜𝑟	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑐𝑜𝑛𝑐𝑒𝑝𝑡] ≤ 2"� ∙ 1 − 𝜖 [	

We	want	this	to	be	≤ 𝛿,	so	that	

2"� ∙ 1 − 𝜖 [ ≤ 𝛿	
2𝑛 + 𝑚	log 1 − 𝜖 ≤ log 𝛿 	

	



−2𝑛 + 𝑚	log(
1

1 − 𝜖
) ≥ log

1
𝛿

	

⇒ 𝑚 ≥
2𝑛 + log 1

𝛿
log 1

1 − 𝜖
.	

3.	Association	Rules	Mining	

• Let	𝐷	be	a	database	(𝐷𝐵)	of	transactions.	
• A	transaction	is	a	set	of	items.	
• Let	𝐼	be	the	set	of	all	possible	items	with	 𝐼 = 𝑑.	
• Any	transaction	𝑡 ∈ 𝐷𝐵	is	a	subset	of	𝐼.	

We	are	interested	in	finding	Rules	of	the	form:	

𝑋 → 𝑌	where	𝑋 ≠ ∅, 𝑌 ≠ ∅, 𝑋 ∩ 𝑌 = ∅, 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼	

• An	itemset	is	a	subset	of	𝐼.	
• A	𝑘-itemset	is	an	itemset	with	𝑘	items.	

For	any	itemset	𝑋,	let	𝜎(𝑋)	denote	the	number	of	transactions	in	𝐷	that	contain	𝑋.	

• 𝑆𝑢𝑝𝑝𝑜𝑟𝑡	for	the	𝑅𝑢𝑙𝑒	𝑋 → 𝑌	is	§ ¨∪ª
�

	where	𝑛 = 𝐷 .	

• 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	for	the	𝑅𝑢𝑙𝑒	𝑋 → 𝑌	is	§ ¨∪ª
§(¨)	

.	

Problem:	

Given	𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡,	𝑚𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	and	a	database	𝐷𝐵	of	transactions,	identify	all	the	𝑅𝑢𝑙𝑒𝑠	𝑋 → 𝑌	
for	which	the	𝑠𝑢𝑝𝑝𝑜𝑟𝑡	is	≥	𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡	and	the	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	is	≥	𝑚𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒.	


