
CSE4502/5717: Big Data Analytics 

Prof. Sanguthevar Rajasekaran 
Notes by Zigeng Wang (TA) 

April 16th, 2018 

1. Association Rules Mining 

 Let 𝐷 be a database (𝐷𝐵) of transactions. 

 A transaction is a set of items. 

 Let 𝐼 be the set of all possible items with |𝐼| = 𝑑. 

 Any transaction 𝑡 ∈ 𝐷𝐵 is a subset of 𝐼. 

We are interested in finding Rules of the form: 

𝑋 → 𝑌 𝑤ℎ𝑒𝑟𝑒 𝑋 ≠ ∅, 𝑌 ≠ ∅, 𝑋 ∩ 𝑌 = ∅, 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼 

 An itemset is a subset of 𝐼. 

 A 𝑘-itemset is an itemset with 𝑘 items. 

For any itemset 𝑋, let 𝜎(𝑋) denote the number of transactions in 𝐷 that contain 𝑋. 

 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 for the 𝑅𝑢𝑙𝑒 𝑋 → 𝑌 is 
𝜎(𝑋∪𝑌)

𝑛
 where 𝑛 = |𝐷|. 

 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 for the 𝑅𝑢𝑙𝑒 𝑋 → 𝑌 is 
𝜎(𝑋∪𝑌)

𝜎(𝑋) 
. 

Problem 

Given 𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡, 𝑚𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 and a database 𝐷𝐵 of transactions, identify all the 𝑅𝑢𝑙𝑒𝑠 𝑋 → 𝑌 

for which the 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is ≥ 𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 and the 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. 

 An itemset 𝑋 is 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 if itemset 𝜎(𝑋) ≥ n ∙ 𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 

A generic approach 

1. Identify all the frequent itemsets.  

2. For each frequent itemset generate rules with a 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. 

 

For example, if 𝑋’ is a frequent itemset and 𝑋′ = 𝑋 ∪ 𝑌, check if 𝑋 → 𝑌 has enough confidence. Note 

that, here, 𝑋 ≠ ∅,  𝑌 ≠ ∅ 𝑎𝑛𝑑 𝑋 ∩ 𝑌 = ∅. 

 

1.1 Identifying Frequent Itemsets 

1.1.1 A Brute Force Algorithm 

In order to find the frequent k-itemsets, we can use a naïve 2-step approach like the following: 

1. Generates all the k-itemsets. 

2. For each itemset, it scans the database and checks if the itemset is frequent. 



Assume that we store every transaction 𝑡 as a bit array of size 𝑑 where 𝑡[𝑖] is 1 if item 𝑖 is in the 

transaction and 0 otherwise. The following shows an example for 𝑡 =  (2, 4, 5).  

 

 

 

Therefore, it takes 𝑂(𝑘) time to check if an itemset of size 𝑘 can be found in a transaction and takes 

𝑂(𝑛𝑘) time in 𝑛 transactions. Thus, for all possible k-itemsets, the running time of the entire 

algorithm is 𝑂 ((
𝑑
𝑘

) 𝑛𝑘). 

1.1.2 Apriori Principle 

 If itemset X is not frequent then no superset of X is frequent. 

 If itemset X is frequent then every subset of X is also frequent. 

Example 

Given database 𝐷 as the following and 𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =  ¼, we want to find the all frequent itemsets.  

# Transactions 

t1 Bread, Milk, Salt 

t2 Salt, Pepper, IceCream 

t3 Milk, Salt 

t4 Sugar, IceCream, Salt 

t5 Milk, Coffee, Sugar 

t6 IceCream, Salt 

t7 IceCream 

t8 IceCream, Sugar, Salt 

From database 𝐷, we have the following observations: 

 𝑛 = |𝐷| = 8 

 𝐼 = {𝐵𝑟𝑒𝑎𝑑, 𝐶𝑜𝑓𝑓𝑒𝑒, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚, 𝑀𝑖𝑙𝑘, 𝑃𝑒𝑝𝑝𝑒𝑟, 𝑆𝑎𝑙𝑡, 𝑆𝑢𝑔𝑎𝑟}  

 𝑑 = |𝐼| = 7 

 A itemset 𝑋 is frequent, iff 𝜎(𝑋) ≥ n ∙ 𝑚𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 = 8 ×
1

4
= 2. 

Let 𝐹𝑘 stand for the set of frequent 𝑘-itemsets, for any 𝑘. Then we have: 

𝐹1
 
= {(IceCream), (Milk), (Salt), (Sugar)} 

𝐹2 = {(Milk, Salt), (Salt, IceCream), (Salt, Sugar), (IceCream, Sugar)} 

𝐹3 = {(Salt, Sugar, IceCream)} 

 𝐹4 = ∅ 

0 1 0 1 1 0 ... 0 

1 2 3 4 5 6 … d 



If we are using the brute force algorithm, it will generate 7 1-itemsets, (
7
2

) 2-itemsets, (
7
3

)  3-itemsets 

and (
7
4

) 4-itemsets. In total,  

𝑁𝑜. 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑟𝑢𝑡𝑒 𝐹𝑜𝑟𝑐𝑒 𝐴𝑙𝑔𝑜. = (
7
1

) + (
7
2

) + (
7
3

) + (
7
4

) = 98 

On the other hand, the Apriori algorithm will generate 7 1-itemsets, (
4
2

)  2-itemsets, 4 × 2 = 8 3-

itemsets and 1 4-itemset. In total, 

𝑁𝑜. 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑟𝑢𝑡𝑒 𝐹𝑜𝑟𝑐𝑒 𝐴𝑙𝑔𝑜. = (
7
1

) + (
4
2

) + 8 + 1 = 22 

 Let 𝐶𝑘 denote the candidates of frequent k-itemsets. 

The Apriori Algorithm1 can be defined as the following: 

 

Generation of Candidates 

 𝐹k−1 × 𝐹1 method:  

To every frequent (k-1)-itemset, add every frequent item (1-itemset), to generate candidates. 

The time for candidate generation using this method is 𝑂(|𝐹𝑘−1||𝐹1|𝑘). 

 𝐹𝑘−1 × 𝐹𝑘−1 method:  

Let: 𝑎1, 𝑎2, ⋯ , 𝑎𝑘−2, 𝑎𝑘−1 and 𝑏1, 𝑏2, ⋯ , 𝑏𝑘−2, 𝑏𝑘−1 ∈ 𝐹𝑘−1. 

                                                           
1 Figure from Marius Nicolae’s note, March 2014 



 If 𝑎𝑖 =  𝑏𝑖, ∀𝑖 =  1, ⋯ , 𝑘 − 2 then generate candidate 𝑎1, 𝑎2, ⋯ , 𝑎𝑘−2, 𝑎𝑘−1, 𝑏𝑘−1 

The time for candidate generation using this method is 𝑂(|𝐹𝑘−1|2𝑘). 

Candidate Pruning2 

 Based on Apriori principle, if 𝐶 is a candidate in 𝐶𝑘, check if every 𝑘 − 1 subset of 𝐶 is frequent 

(∈ 𝐹𝑘−1). If not, discard the candidate.  

 To check if a 𝑘 − 1 itemset belongs to 𝐹𝑘−1 we can use a 𝑘 − 1 leveled Hash Tree.  

o A Hash Tree is a tree where every node contains a hash table. Itemsets are inserted in 

the tree based on the hash values of their items. Specically, at the root, hashing is done 

on the first item of the itemset hashed. In the next level of the tree, hashing is done on 

the second item of the itemset, etc. Thus, if the itemsets are of size k, then there will be 

k levels in the tree. 

Example 

Consider the following itemsets: (2,3,8), (3,5,6), (1,4,7), (2,3,5), (3,6,8), (1,5,7), (2,4,7) and the hash 

function ℎ(𝑥) =  𝑥 𝑚𝑜𝑑 3. Then the hash tree looks as follows (empty subtrees omitted because of 

space limitations). 

 

 If we build a Hash Tree for 𝐹𝑘−1 then we can check if an itemset is in 𝐹𝑘−1 in 𝑂(𝑘) time. 

 An itemset of size 𝑘 has 𝑘 different subsets of size 𝑘 − 1. We can search each subset in the hash 

tree in time 𝑂(𝑘).  Therefore the time for pruning is 𝑂(|𝐶𝑘|𝑘2) 

 

Other Techniques 

 

To avoid generating a candidate many times, we can keep any itemset in increasing order of the items in 

it. When we generate a new itemset from an existing one, we will only add elements larger than the 

largest element in the existing itemset. 

                                                           
2 Referenced from Marius Nicolae’s note, March 2014 


