
CSE 4502/5717 - Big Data Analytics
Lecture 25, April 25, 2018

Record Linkage

Record linkage is an important problem in biomedical informatics where individuals may
have multiple records. Identifying all the records belonging to each individual could lead to
a lot savings in providing healthcare. We can define the record linkage problem as follows:

input: R1, R2, . . . , Rn (records coming from several datasets);
output: clusters where each cluster contains all the records belonging to one and only one
individual.

If each record has a unique key and there are no errors in this key, then the above problem
is trivial. However, in practice, there may not be any such unique key and there could be
many sources of error. For instance, there could be typing mistakes, the first name and the
last name could be swapped, nicknames could be used, names could be abbreviated, etc.
These errors make the problem of record linkage challenging. The performance of any record
linkage algorithm is measured with its run time and accuracy.

A simple algorithm: Put all the records into one collection C, perform Hierarchical
clustering on C. Each cluster is output as records belonging to one individual.

Each record can be thought of as a string of characters (obtained by concatenating the
various fields in the record such as the first name, last name, social security number, etc.)
Distance between two records is calculated as the edit distance between the two correspond-
ing strings. Recall that string edit distance is the minimum number of edits needed to
transform one string into another using insertion, deletion, and substitution operations.

Let Ri and Rj be any two records. Let max{|Ri|, |Rj|} = L. We can compute the
distance between Ri and Rj in O(L2) time using dynamic programming. If τ is an upper
bound on the distance between Ri and Rj, then we can compute the distance between them
in O(Lτ time or O(L+ τ 2) time.

The run time of the above simple algorithm can be seen to be O(n2Lτ). We can improve
this run time using the blocking teachnique.

Blocking Technique

The record linkage algorithm using the blocking technique works as follows:

Step 1: Let R be any record. For some small value of k (such as 3 or 4), we generate all pos-
sible k-mers of R. For example, let the alphabet be {0, 1, 2, . . . , 9}, R = 2313314211342132,
and k = 3. In this case the following 3-mers will be generated: 231, 313, 133, 331, 314, 142, 421, 211,
113, 134, 342, 421, 213, 132. There will be a bucket corresponding to each possible k-mer. In
the above example there will be 1, 000 buckets corresponding to the 3-mers 000, 001, 001, . . . , 999.

1

The record R will be placed in each of the buckets corresponding to its k-mers; In the
above example, R will be placed in all the 14 buckets listed above. In particular, if |R| = l,
then R will be placed in l − k + 1 buckets;

The intuition behind blocking is the observation that if two records are very similar, then
they should share at least one k-mer (for some suitably small value of k).

Step 2: for each bucket B do
Cluster the records in B (using the hierarchical clustering algorithm);

Step 3: Construct a graph G(V,E) where each input record is a node. There will be an edge
between two records Ri and Rj if these two records have been placed in the same cluster in
at least one of the buckets (in Step 2);

Step 4: Find the connected components of G(V,E). Output each connected component as
a cluster (i.e., records belonging to one individual);

Analysis: Le the size of the alphabet be 36 (26 English letters and 10 digits). There will be
36k buckets. Note that each record goes to ≤ (L− k+ 1) buckets, where L is the maximum

length of any record. This means that the expected size of each bucket is n(L−k+1)
36k

< nL
36k

.

The expected time spent in clustering each bucket is O
((

nL
36k

)2
Lτ
)

. Summing over all

the buckets, the total expected time spent (in Step 2) is O
(
n2Lτ L2

36k

)
.

Note that L2

36k
could be much less than one and hence blocking helps in reducing the run

time. For example, consider the case of L = 36 and k = 4.
→ L2

36k
= 362

364
= 1

1296
� 1.

Steps 1, 3, and 4 take a total of O(n(L− k + 1)) = O(nL) time. �

There exist many other clustering algorithms. One such is the k-means clustering algo-
rithm.
k −means clustering:
Input: p1, p2, ..., pn
Output: C1, C2, ..., Ck

Let q1, q2, ..., qk be the centers of the clusters.

We want to minimize:
k∑

i=1

∑
pji∈Ci

(pji − qi)

Lloyd’s Algorithm:
Start with k random points as centers. Associate each point with the center that is the
closest to it. Now we have new clusters. Compute the center of each cluster. Associate each
point with the center that is the closest to it. Repeat the above process until the clusters do
not change any more.

2

The Closest Pair Problem

Given a set of n points in a metric space, the closest pair problem (CPP) is to identify the
closest pair of points. This problem has numerous applications such as in Clustering, Time
Series Motifs, Genome-wide Association Study (GWAS), etc. A simple algorithm takes O(n2)
time. There exists an O(n log n) time divide and conquer algorithm. There exist randomized
algorithms that take an expected linear time as well. All the above algorithms have an
exponential dependence on the dimension. Algorithms that perform the best in practice
happen to have O(n2) run times in the worst case. The run times of these algorithms depend
linearly on the dimension. A number of heuristics are used in practice (in conjunction with
the simple O(n2) time algorithm): early abandoning, pruning using the triangular inequality.

Early abondoning: The idea here is to speedup the computation of distances. Let x =
(x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be any two points in <d. To compute the distance
between x and y, the algorithm keeps adding (xi − yi)2 for i = 1, 2, . . . , d. When the sum
exceeds δ2 in the middle of this computation, this pair is immediately dropped (without
completing the rest of the distance computation). Here δ is a known upper bound on the
distance between the closest pair of points. This technique is known as early abandoning.
For example, a value for δ could be otained at the beginning of any algorithm using a random
sample of points. From thereon, δ could be dynamically updated to be the smallest distance
among all the point pairs that have been processed until that point in the algorithm.

Pruning using the triangular inequality: Let x and y be any two points. At any stage
in the algorithm, we have an upper bound δ on the distance between the closest pair of
points. If d(x, y) can be inferred to be greater than δ, then we can drop the pair (x, y) from
future consideration (since this pair cannot be the closest). Ideally, we would like to calculate
d(x, y) exactly for every pair of points x and y. But this will take too much time. We can
circumvent this problem by estimating the distance between x and y via the triangular
inequality. In particular, a random reference point r is chosen and the distance between
each input point and r is computed. The points are kept in an ascending order of their
distances to r. From thereon, d(r, y) − d(r, x) is used as a lower bound on d(x, y). If this
lower bound is > δ, then (x, y) is dropped from future consideration.

Let p1, p2, . . . , pn be the input points. Choose one of these as reference. Let this point
be r. Compute the distance between r and every input point and sort them based on this
distance. For every point pi in this sorted list compute the distance between pi and every
point to the right. We always keep the smallest distance δ seen so far. Let pj be a point to
the right of pi. Trinagular inequality implies that d(pi, pj) ≥ d(r, pj)− d(r, pi). If the RHS is
> δ, we can skip the computation of the distance between pi and pj and every point to the
right of pj. See Figure 1.

3

Figure 1: Pruning using the triangular inequality.

Projecting the reference point: This technique exploits the relationship between d(r, x)
and |d(r, x)− d(r, y)|. In particular, we pick a random reference point and project it out by
multiplying each coordinate value of the point by a factor of f . For example, f could be
10. The rest of the algorithm is the same as before (i.e., use early abandoning and pruning
using the triangular inequality). To illustrate how projection helps see Figure 2. Consider
two points A = (0, 0) and B = (1, 0). When we use r1 as the reference point (for which
d(A, r1) =

√
2)), d(r1, A) − d(r1, B) ≈ 0.41. When we use r3 as the reference (for which

d(r3, A) = 10), d(r3, A)− d(r3, B) increases to around 0.68.

(1,0)

r

1

(0,0)

45
0

1.41

1

(a)

(1,0)(0,0)

45
0

r

9.3210

3

(b)

Figure 2: The effect of scaling on reference points.

4

