
CSE 4502/5717 Big Data Analytics – Spring 2018

Lecture 3: January 29, 2018

Parallel Algorithms: Prefix Computation

• Input: A sequence X = k1, k2, . . . , kn of elements from a domain Σ. ⊕ is a binary,

associative, and unit operation defined on Σ. Recall that an operation ⊕ on Σ is associative

if for any three elements x, y, z in Σ, the following holds: x⊕(y⊕z) = (x⊕y)⊕z = x⊕y⊕z.

• Output: k1, k1 ⊕ k2, k1 ⊕ k2 ⊕ k3, . . . , k1 ⊕ k2 ⊕ · · · kn.

A Divide-and-conquer Algorithm for Prefix Computation

• We will first discuss a divide-and-conquer parallel algorithm that employs n CREW PRAM

processors.

• Step 0) We partition the input into two equal halves: X1 = k1, k2, . . . , kn/2 and X2 =

k(n/2)+1, k(n/2)+2, . . . , kn.

• Step 1) n
2

processors recursively perform a prefix computation on X1. Let the output

be k′1, k
′
2, . . . , k

′
n/2; At the same time the other n

2
processors recursively perform a prefix

computation on X2. Let the output be k′(n/2)+1, k
′
(n/2)+2, . . . , k

′
n.

• Note that k′1, k
′
2, . . . , k

′
n/2 is indeed the first half of the prefix outputs for X. Thus we can

output these without any modifications.

• Step 3) We can modify k′(n/2)+1, k
′
(n/2)+2, . . . , k

′
n by pre-adding k′n/2 to every element. (Here

the word ‘adding’ refers to the operator ⊕). The modified values will be the second half

of the prefix outputs for X. This modification can be done in O(1) time using n
2

CREW

PRAM processors.

Run time analysis: Like for any recursive algorithm, we have to write a recurrence relation

for the run time, and solve it. Let T (n) be the run time of the above algorithm on any input of

size n, where the number of processors used is n.

Then we get the following recurrence relation: T (n) = T (n/2) + O(1) which solves to

T (n) = O(log n). As a result, we get the following Lemma.

Lemma 1: We can solve the prefix computation problem on any input of size n in O(log n) time

using n CREW PRAM processors. �



An Optimal Prefix Computation Algorithm

• We can get an optimal prefix computation algorithm using a technique due to Richard

Brent. The idea is to reduce the input size sufficiently, employ a nonoptimal algorithm to

solve the problem on the reduced input, and use these results to obtain the results for the

original input. Let P = n
logn

and let X = k1, k2, . . . , kn be the input. A detailed description

is given below.

0) Assign log n elements per processor. Specifically, assign the elements

k(i−1) logn+1, k(i−1) logn+2, . . . , ki logn to processor i, for 1 ≤ i ≤ P ;

1) for i = 1 to P in parallel do

2) Processor i performs a prefix computation on its log n elements

k(i−1) logn+1, k(i−1) logn+2, . . . , ki logn to get

k′(i−1) logn+1, k
′
(i−1) logn+2, . . . , k

′
i logn;

3) P processors collective perform a prefix computation on

k′logn, k
′
2 logn, . . . , k

′
n to get

k′′logn, k
′′
2 logn, . . . , k

′′
n;

4) for i = 2 to n in parallel do

5) Processor i outputs k′′(i−1) logn ⊕ k′(i−1) logn+1,

k′′(i−1) logn ⊕ k′(i−1) logn+2, . . . , k
′′
(i−1) logn ⊕ k′i logn;

Run time analysis: Step 2 takes O(log n) time. In step 3 we have to perform a prefix com-

putation on n
logn

elements using n
logn

processors. Using Lemma 1, we infer that Step 3 takes

O
(

log
(

n
logn

))
= O(log n) time. Step 5 takes O(log n) time. Thus the total run time of the

algorithm is O(log n) resulting in the following Lemma.

Lemma 2: We can solve the prefix computation problem on any input of size n in O(log n) time

using n
logn

CREW PRAM processors. �

Observation: The above algorithm is asymptotically optimal since S = n and the work done

by the parallel algorithm is O(n).



	
Out-of-Core	Computing:	
	

• When	we	have	too	much	data	we	may	not	be	able	to	store	all	of	 them	in	the	main	
(i.e.,	core)	memory	of	the	computer	that	we	are	using.	Most	of	the	data	may	have	to	
be	stored	in	secondary	storage	devices	such	as	disks.	We	can	only	bring	to	the	core	
memory	a	portion	of	the	data	at	any	given	time,	do	some	processing	on	it	and	store	
the	(partial	results)	in	the	disk.		
	

• There	is	a	hierarchy	in	memory	devices.	
	

• A	hierarchy	of	memory	devices	could	be:	Registers,	Instruction	Cache,	L1	Cache,	L2	
Cache,	Core	Memory,	Disk,	etc.	
	

• The	devices	of	the	list	above	are	in	increasing	order	in	terms	of	the	time	it	takes	to	
access	data	from.	Therefore,	the	first	device	is	the	fastest	one	to	access	data	and	the	
last	device	shown	on	the	list	is	the	slowest	one	to	access	data.			

	
• The	time	it	takes	to	access	one	record	in	the	various	devices	are:	

o Registers	–>	Nanosecond	(10#$)		
o Core	Memory	->	Several	Nanoseconds	
o Disk	->	Several	Milliseconds	
o SSDs	->	Microseconds	

	
• It	pays	 to	minimize	 the	number	of	 I/O	operations	since	accessing	data	 in	 the	disk	

takes	more	time	than	having	the	data	in	a	higher	place	on	the	list	above.	
	

• We	can	 let	 the	OS	handle	 the	 I/O	operations	on	 the	disk(s).	However,	 this	may	be	
highly	 inefficient.	 The	 OS	 typically	 uses	 prefetching	 or	 caching	 to	 minimize	 I/O	
operations.	 We	 can	 get	 vastly	 better	 performances	 by	 explicitly	 handling	 I/O	
operations	in	our	algorithms.	
	

• Definition:	An	Out-of-Core	algorithm	is	one	where	the	algorithm	explicitly	dictates	
how	to	handle	the	I/O’s.	It	focuses	on	trying	to	minimize	the	number	of	I/O’s.	

	
• Representation	of	a	disk:	

	
	
	
	
	
	

	
																	 	 	 	 	 	

Block	size	=	B	

Track	

Arm:	Reads	the		
data	 of	 the	 disk	 and	
moves	horizontally.	Rotation	of	the	disk	



	 	 	 	
• I/O	operations	happen	in	units	of	blocks.	Due	to	the	latency	involved	in	seeking	the	

right	 track,	moving	 the	 arm,	 etc.,	 it	 helps	 to	move	more	 than	 one	 records	 in	 any	
single	I/O	operation.	This	is	why	a	block	is	involved	in	any	I/O.	A	block	consists	of	
many	records.	We	let	B	denote	the	size	of	a	block.	
		

Sorting:		
	

• INPUT:	𝑋 = 𝑘(, 𝑘*, …	, 𝑘-		
• OUTPUT:	Sorted	order	of	X.	

	
• Fact:	Sorting	n	keys	in	core	requires	Ω(n	log	n)	comparisons.	

	
• Lemma:	Sorting	n	keys	(residing	in	a	disk)	needs	Ω -

/
	012	(-/5)
	012	(5//)

	I/O	operations.	
	

• Here	M	is	the	core	memory	size	and	B	is	the	block	size.		
	

	
• Definition:	One	pass	through	the	data	refers	to	n/B	I/O	operations.	Each	input	key	

is	brought	into	core	memory	exactly	once	(in	one	pass).	
	
	
Sorting	Algorithm:		

• First	attempt:	
1) Do	one	pass	through	the	data	and	form	runs	of	length	M	each.	A	run	is	a	

sorted	subsequence.	
• We	have	to	merge	these	n/M	runs.	

	
2) We	can	use	2-way	merge:	

	
	
	
	
	
	
	
	
	
	
	 	 	 	 	 ⋯		
	
	 	 										⋮	
	
	

Run	1	

Run	2	

Run	3	

Run	4	

Run	𝑛/𝑀	

Merge	

Merge	

Merge	

Merge	

2M	
	M	

	



• 2M	 is	 the	 length	 of	 the	 run	 obtained	 by	merging	 two	 runs	 of	 length	M	
each.		

• At	 each	 level	 of	merging,	 the	 number	 of	 elements	 in	 any	 run	will	 keep	
increasing	by	a	 factor	of	2	until	we	are	 left	with	 two	runs	of	 length	n/2	
each.	When	we	merge	these	two	we	get	sorted	X.	

	
• Consider	the	merging	of	two	runs	of	length	ℓ	each:	

	
	

	
	
	

	 	 	 	 	 	 	 	 	

	 	 	
	

• We	keep	M/2B	blocks	of	R(	and	M/2B	blocks	of	R*	in	the	main	memory.	Merge	these	
in	the	computer.	
	

• When	B	keys	in	the	output	are	produced,	output	this	block	in	the	disk.	
	

• When	B	keys	have	been	consumed	from	any	run,	we	do	one	read	(i.e.,	one	block)	of	
that	run	from	the	disk	.	

	
• Example	1:		

	
	R(:	5,	11,	15,	17,	28,	32,	45	
	
	R*:	3,	8,	21,	23,	35,	42,	75,	76	

	
	

o Let	M=8	and	B=2.	To	begin	with	the	core	memory	has	5,11,15,17	from	R1	and	
3,8,21,23	from	R2.	We	start	merging	these	two.	The	first	two	output	elements	are	
3	and	5.	These	are	output	to	the	disk	as	a	part	of	the	merged	run.	The	next	
element	output	is	8.	At	this	point,	we	have	used	a	block	of	R2	and	hence	the	next	
block	of	R2	(i.e.,	35,42)	will	be	read	into	the	core	memory.	The	next	element	
output	is	11.	We	write	8,11	into	the	disk.	We	also	read	the	next	block	of	R1;	and	
so	on.	

	
	

• Example	2:		
	

	R(:	1,	2,	3,	4,	5,	6,	7,	8	

R(	

R*	

ℓ	

ℓ	



	
	R*:	9,	10,	11,	12,	13,	14,	15,	16	

	
	

o To	begin	with:	
§ Core	memory:	

	
1	 2	 3	 4	 5	 6	 7	 8	 	 	 	 	
9	 10	 11	 12	 	 	 	 	 13	 14	 15	 16	

	
To	begin	with	we	have	4	elements	from	each	run	in	the	core	memory.	The	
first	two	elements	output	are	1	and	2.	They	are	written	to	the	disk.	We	then	
read	5	and	6	from	R1;	and	so	on.	
	
	
	

• Analysis:	
- To	merge	two	sequences	of	length	𝑙	each,	the	number	of	read	I/O	

operations	is	equal	to	2𝑙/𝐵		(i.e.	we	only	do	one	pass	through	these	two	
runs).	
	

	
	 	 	 n	 	 	 	
	 	 	 	 	 	 	
	 	 	 n/2	 n/2	 	 	 													one	pass	
	 	 	 	 	 	 	 	
	 	 	 	

⋮	
	
	

	 	

	 4M	 	 	 4M	 													one	pass	
	 	 	 	 	 	

2M	 2M	 2M	 																2M												one	pass	
	 	 	 	

*	
M	

*	
M	

*	
M	

*					
M	

*	
M	

*																						*		
M									⋯								M	

						*				
					M	

	
ð The	total	number	of	passes	is:	log 𝑛/𝑀 + 1	

	
ð The	number	of	I/O’s	is:	-

/
log -

5
+ 1 .	

	
	
Note	that	this	algorithm	is	not	asymptotically	optimal.	We	can	modify	this	to	make	it	
optimal.	


