CSE 4502/5717 Big Data Analytics

Notes taken by: Sheng Xiong

Lecture 5 – 02/05/2018

An out-of-core implementation of BFPRT algorithm:

- 1. Bring one block at a time and group the blocks into groups of size 5 each. Then, find the median of each group and write the medians in an output buffer.
 - When we are done with one block, bring the next block.
 - When the output buffer has one block, write it in the disk.
 - Proceed similarly until all the blocks have been processed.

The number of (read) I/O operations = $\frac{n}{R}$

- 2. Find recursively the median of the medians.
- 3. Partition the input into X_1 and X_2 , using M as the pivot.

 X

 X1

 X2

The number of I/O operations $=\frac{n}{B}$

4. Do a recursively selection on X_1 or X_2 (as needed).

Analysis:

Let I(n) be the number of I/O operations needed on any input of size n and for any i.

$$I(n) = \frac{n}{B} + I(\frac{n}{5}) + \frac{n}{B} + I(\frac{7}{10}n)$$

Hypothesis: $I(n) \leq \frac{C \cdot n}{B}$ for some constant C.

Proof by induction:

Base case: Easy

Induction step: Assume the hypothesis for inputs of size up to (n - 1).

We will prove it for n:

$$I(n) \leq I(\frac{n}{5}) + I(\frac{7}{10}n) + 2 \cdot \frac{n}{B}$$
$$\leq \frac{C \cdot n}{5B} + \frac{C \cdot 7}{10} \cdot \frac{n}{B} + 2 \cdot \frac{n}{B}$$
$$RHS = 0.9\frac{C \cdot n}{B} + 2 \cdot \frac{n}{B}$$
$$RHS \leq \frac{C \cdot n}{B} \text{ if } 0.9\frac{C \cdot n}{B} + 2 \cdot \frac{n}{B} \leq C \cdot n$$
$$=> 0.1C \geq 2$$
$$=> C \geq 20$$
$$=> I(n) \leq 20 \cdot \frac{n}{B}$$

Chernoff Bounds:

A Bernoulli trial has two outcomes: success or failure.

Assume Prob. [Success] = p

The number of successes in n independent Bernoulli trials is a Binomial Random Variable denoted as B(n, p).

If X = B(n, p), then:

(1) Prob.
$$[X > m] \le \left(\frac{np}{m}\right)^m \cdot e^{-np+m}$$
, for any $m > np$;

(2) Prob.
$$[X > (1 + \varepsilon)np] \le \exp(\frac{-\varepsilon^2 np}{3})$$
, for any $0 < \varepsilon < 1$; and
(3) Prob. $[X < (1 - \varepsilon)np] \le \exp(\frac{-\varepsilon^2 np}{2})$, for any $0 < \varepsilon < 1$.

Example:

$$X = B(1000, \frac{1}{2})$$

(1 + \varepsilon) \cdot 500 = 600
=> \varepsilon = \frac{1}{5}
Prob. [X > 600] \le exp(- \frac{1}{25 \cdot 3} \cdot 500)
= exp(-\frac{20}{3})

Markov's inequality: Prob. $[X > 1.2 (500)] \le \frac{1}{1.2} = \frac{5}{6}$

Let X be any sequence of n real numbers;

Let S be a random sample from X, with |S| = s;

Let $q \in S$ such that Rank(q, S) = j

Note: $Rank(x, X) = |\{q \in X : q < x\}| + 1$

Let r_i be the rank of q in X.

Then, $E[r_j] = j \cdot \frac{n}{s}$

Lemma (Rajasekaran & Reif 1986):

Prob.
$$[|r_j - j \cdot \frac{n}{s}| > \sqrt{3\alpha} \frac{n}{\sqrt{s}} \sqrt{\log n}] \le n^{-\alpha}$$

A Randomized Algorithm (Floyd & Rivest 1975):

- 1. Pick a random sample S from X.
- 2. Identify two elements l_1 and l_2 such that

$$\operatorname{Rank}(l_1, S) = i \cdot \frac{s}{n} - \delta$$

Rank
$$(l_2, S) = i \cdot \frac{s}{n} + \delta$$
, where $\delta = \sqrt{4\alpha s \log n}$

Example:

 $X=3,\,8,\,12,\,9,\,5,\,4,\,11,\,35,\,2$

Rank(5, X) = 3 + 1 = 4

Let $n_1 = |\{q \in X : q < l_1\}|$

Let $n_2 = |\{ q \in X : q \le l_2 \}|$

If the ith smallest element of X is not within $[l_1, l_2]$, then start all over. Note that the ith smallest element of X will be in the interval if $i > n_1$ and $i \le n_2$.

If the number of elements of X that are in interval $[l_1, l_2]$ is "large", then start all over.

- 3. Scan through X to get $Y = \{ q \in X : l_1 \le q \le l_2 \}$. 4. Find the $(i-n_1)^{\text{th}}$ smallest element of Y and output.