CSE 4502/5717 Big Data Analytics

Notes taken by: Sheng Xiong

Lecture 5 -02/05/2018

An out-of-core implementation of BFPRT algorithm:

1. Bring one block at a time and group the blocks into groups of size 5 each. Then, find the median of each group and write the medians in an output buffer.

- When we are done with one block, bring the next block.
- When the output buffer has one block, write it in the disk.
- Proceed similarly until all the blocks have been processed.

Group Medians

The number of (read) I/O operations $=\frac{n}{B}$
2. Find recursively the median of the medians.
3. Partition the input into X_{1} and X_{2}, using M as the pivot.

The number of I/O operations $=\frac{n}{B}$
4. Do a recursively selection on X_{1} or X_{2} (as needed).

Analysis:

Let $\mathrm{I}(\mathrm{n})$ be the number of I / O operations needed on any input of size n and for any i .

$$
\mathrm{I}(\mathrm{n})=\frac{n}{B}+\mathrm{I}\left(\frac{n}{5}\right)+\frac{n}{B}+\mathrm{I}\left(\frac{7}{10} n\right)
$$

Hypothesis: $\mathrm{I}(\mathrm{n}) \leq \frac{C \cdot n}{B}$ for some constant C .

Proof by induction:

Base case: Easy
Induction step: Assume the hypothesis for inputs of size up to ($n-1$).
We will prove it for n :

$$
\begin{aligned}
& \mathrm{I}(\mathrm{n}) \leq \mathrm{I}\left(\frac{n}{5}\right)+\mathrm{I}\left(\frac{7}{10} n\right)+2 \cdot \frac{n}{B} \\
& \begin{aligned}
\leq \frac{C \cdot n}{5 B}+\frac{C \cdot 7}{10} \cdot \frac{n}{B}+2 \cdot \frac{n}{B}
\end{aligned} \\
& \begin{aligned}
\text { RHS } & =0.9 \frac{C \cdot n}{B}+2 \cdot \frac{n}{B}
\end{aligned} \\
& \begin{aligned}
& \text { RHS } \leq \frac{C \cdot n}{B} \text { if } 0.9 \frac{C \cdot n}{B}+2 \cdot \frac{n}{B} \leq \mathrm{C} \cdot \mathrm{n} \\
&=>0.1 \mathrm{C} \geq 2 \\
&=>\mathrm{C} \geq 20
\end{aligned} \\
& =>\mathrm{I}(\mathrm{n}) \leq 20 \cdot \frac{n}{B}
\end{aligned}
$$

Chernoff Bounds:

A Bernoulli trial has two outcomes: success or failure.

Assume Prob. [Success] = p
The number of successes in n independent Bernoulli trials is a Binomial Random Variable denoted as $B(n, p)$.

If $\mathrm{X}=\mathrm{B}(\mathrm{n}, \mathrm{p})$, then:
(1) Prob. $[\mathrm{X}>\mathrm{m}] \leq\left(\frac{n p}{m}\right)^{m} \cdot e^{-n p+m}$, for any $\mathrm{m}>\mathrm{np}$;
(2) Prob. $[\mathrm{X}>(1+\varepsilon) \mathrm{np}] \leq \exp \left(\frac{-\varepsilon^{2} n p}{3}\right)$, for any $0<\varepsilon<1$; and
(3) Prob. $[\mathrm{X}<(1-\varepsilon) \mathrm{np}] \leq \exp \left(\frac{-\varepsilon^{2} n p}{2}\right)$, for any $0<\varepsilon<1$.

Example:

$$
\begin{aligned}
& X=B\left(1000, \frac{1}{2}\right) \\
& (1+\varepsilon) \cdot 500=600 \\
& =>\varepsilon=\frac{1}{5}
\end{aligned}
$$

Prob. $[X>600] \leq \exp \left(-\frac{1}{25 \cdot 3} \cdot 500\right)$

$$
=\exp \left(-\frac{20}{3}\right)
$$

Markov's inequality: Prob. $[\mathrm{X}>1.2(500)] \leq \frac{1}{1.2}=\frac{5}{6}$
Let X be any sequence of n real numbers;
Let S be a random sample from X, with $|S|=s$;
Let $q \in S$ such that $\operatorname{Rank}(q, S)=j$

$$
\text { Note: } \operatorname{Rank}(x, X)=|\{q \in X: q<x\}|+1
$$

Example:

$X=3,8,12,9,5,4,11,35,2$
$\operatorname{Rank}(5, X)=3+1=4$

Let r_{j} be the rank of q in X .
Then, $\mathrm{E}\left[r_{j}\right]=\mathrm{j} \cdot \frac{n}{s}$

Lemma (Rajasekaran \& Reif 1986):

Prob. $\left[\left|r_{j}-j \cdot \frac{n}{s}\right|>\sqrt{3 \alpha} \frac{n}{\sqrt{s}} \sqrt{\log n}\right] \leq n^{-\alpha}$
A Randomized Algorithm (Floyd \& Rivest 1975):

1. Pick a random sample S from X.
2. Identify two elements l_{1} and l_{2} such that
$\operatorname{Rank}\left(l_{1}, \mathrm{~S}\right)=\mathrm{i} \cdot \frac{s}{n}-\delta$
$\operatorname{Rank}\left(l_{2}, \mathrm{~S}\right)=\mathrm{i} \cdot \frac{s}{n}+\delta$, where $\delta=\sqrt{4 \alpha s \log n}$

Let $n_{1}=\left|\left\{\mathrm{q} \in \mathrm{X}: \mathrm{q}<l_{1}\right\}\right|$
Let $n_{2}=\left|\left\{\mathrm{q} \in \mathrm{X}: \mathrm{q} \leq l_{2}\right\}\right|$
If the $\mathrm{i}^{\text {th }}$ smallest element of X is not within $\left[l_{1}, l_{2}\right]$, then start all over. Note that the $\mathrm{i}^{\text {th }}$ smallest element of X will be in the interval if $i>n_{1}$ and $i \leq n_{2}$.

If the number of elements of X that are in interval $\left[l_{1}, l_{2}\right]$ is "large", then start all over.
3. Scan through X to get $\mathrm{Y}=\left\{\mathrm{q} \in \mathrm{X}: l_{1} \leq \mathrm{q} \leq l_{2}\right\}$.
4. Find the $\left(\mathrm{i}-n_{1}\right)^{\text {th }}$ smallest element of Y and output.

