Lecture 6-02/12/2018
$>$

$$
\begin{aligned}
& \operatorname{Prob}\left(\left|r_{j}-j \frac{n}{s}\right|>\sqrt{3 \alpha} \frac{n}{\sqrt{s}} \sqrt{\log n}\right) \leq n^{-\alpha} \\
& \operatorname{Rank}(\mathrm{q}, \mathrm{~s})=\mathrm{j} \\
& \operatorname{Let} \operatorname{Rank}(\mathrm{q}, \mathrm{X})=\mathrm{r}_{\mathrm{j}}, \mathrm{k}_{2} . . \mathrm{k}_{\mathrm{n}}
\end{aligned}
$$

> To begin with, all the keys are alive, $\mathrm{N}=\mathrm{n}$;
Repeat

1. In one pass through the data pick a random sample S

Each alive key will be in S with a prob. of $\frac{M}{2 N}$

$$
E[|S|]=\frac{M}{2}
$$

2. Pick $l_{1} \& l_{2}$ from S such that,

$$
\begin{aligned}
& \operatorname{Rank}\left(l_{1}, S\right)=i \cdot \frac{s}{N}-\sqrt{4 \alpha s \cdot \log N} \\
& \operatorname{and} \operatorname{Rank}\left(l_{2}, S\right)=i \cdot \frac{s}{N}+\sqrt{4 \alpha s \cdot \log N}
\end{aligned}
$$

3. Do one more pass through the data and store $Y=\{q: q$ is alive and

$$
\left.l_{1}<q \leq l_{2}\right\} \text { in the disk; }
$$

alive keys
$>\boldsymbol{l}_{1}$ and $\leq \boldsymbol{l}_{2}$ Y

$$
\text { let } \begin{aligned}
n_{1} & =\mid\left\{q: q \text { is alive and } q<l_{1}\right\} \mid \\
n_{2} & =\mid\left\{q: q \text { is alive and } q \leq l_{2}\right\} \mid
\end{aligned}
$$

4. If $i<n_{1}$ or $i>n_{2}$
or if $|\mathrm{Y}|>\frac{N}{M^{0.4}}$ then start all over;
else $\mathrm{i}=\mathrm{i}-\mathrm{n}_{1}$ and $\mathrm{N}=|\mathrm{Y}|$;
only the elements in Y are alive;
Until $\mathrm{N} \leq \mathrm{M}$;
Identify and output the $i^{\text {th }}$ smallest from the alive keys.

> Analysis:

In step 1, the \# of sample keys in S is Binomial with parameters N and $\frac{M}{2 N}$
Using Chernoff bounds, $|\mathrm{s}|=\tilde{\theta}(M)$
Expected Rank of l_{1} in $X=\left[i \cdot \frac{s}{N}-\sqrt{4 \alpha \cdot s \cdot \log N}\right] \frac{N}{s}$

$$
=i-\sqrt{4 \alpha} \frac{N}{\sqrt{s}} \sqrt{\log N}
$$

Expected Rank of l_{2} in $X=i+\sqrt{4 \alpha} \frac{N}{\sqrt{s}} \sqrt{\log N}$

$$
\begin{aligned}
|\mathrm{Y}| & \leq i+(\sqrt{4 \alpha}+\sqrt{3 \alpha}) \frac{N}{\sqrt{s}} \sqrt{\log N}-\left[i-(\sqrt{4 \alpha}+\sqrt{3 \alpha}) \frac{N}{\sqrt{s}} \sqrt{\log N}\right] \\
& \leq 2(\sqrt{4 \alpha}+\sqrt{3 \alpha}) \frac{N}{\sqrt{s}} \sqrt{\log N} \text { with a prob. of } \geq\left(1-N^{-\alpha}\right)
\end{aligned}
$$

> w.h.p. (with high probability)

$|\mathrm{Y}|=O\left[(\sqrt{4 \alpha}+\sqrt{3 \alpha}) \frac{N}{\sqrt{M}} \sqrt{\log N}\right] \quad$ note: $N=M^{c} \rightarrow \log N=c \cdot \log M$
If N is a polynomial in M ,
then $|\mathrm{Y}|=O\left(\frac{N}{M^{0.4}}\right)$ w.h.p.
$>$ Example
$\mathrm{M}=10^{9}, \mathrm{~N} \leq \mathrm{M}^{4}$
I/O complexity:

$$
\frac{2 n}{B}+\frac{n}{M^{0.4}} \cdot \frac{2}{B}+\frac{2 n}{M^{0.8} B}+\cdots \leq(2+\varepsilon) \frac{n}{B}, \text { for any constant } \varepsilon>0
$$

> A Graph Problem:

Minimum spanning tree(MST)
Problem:
Input: a weighted, connected and undirected graph, $\mathrm{G}(\mathrm{V}, \mathrm{E})$
Output: A minimum spanning tree for G

> Prim's algorithm

Grow a subtree by adding one edge at a time, starting with the lightest edge.
Let x be any node outside the tree
$\operatorname{NEAR}[\mathrm{x}]=$ the closest tree neighbor of x ;

1. pick the lightest edge $e=(a, b)$ in E;
2. for every $u \in V-\{a, b\}$ do
if weight (u,a) < weight (u, b) then
$\operatorname{NEAR}[u]=\mathrm{a}$; else $\operatorname{NEAR}[u]=b ;$
3. for $u \in V-\{a, b\}$ do
insert u into a 2-3 tree Q where the key value is weight ($u, \operatorname{NEAR}[u]$);
4. for $\mathrm{i}=1$ to $(\mathrm{n}-2)$ do

$$
\begin{aligned}
& \text { find the node } u \text { in } Q \text { with the least key; } \\
& \text { insert }(u, \operatorname{NEAR}[u]) \text { into } T \text {; } \\
& \text { for every } w \in \operatorname{Adj}(u) \text { do } \quad{ }^{*} \operatorname{Adj}(u) \rightarrow \text { Adjacent to } u \\
& \text { if weight }(w, \operatorname{NEAR}[w])>\text { weight }(w, u) \text { then } \\
& \text { NEAR }[w]=u \text {; }
\end{aligned}
$$

> Assume that the input is in adjacency lists form

$>$ Assume that $M=\theta(n), \mathrm{n}=|\mathrm{V}|$. This means that Q can be stored in core memory;

Analysis:

- Step1: takes $\frac{|E|}{B}$ I/O operations
- Step2: takes $\leq \frac{2|V|}{B}$ I/O operations
- Step3: No I/O operations; Let d_{u} be the degree of u for any $u \in V$.
- Step4: takes $\leq \sum_{u \in V}\left\lceil\frac{d_{u}}{B}\right\rceil \leq \sum_{u \in V}\left(\frac{d_{u}}{B}+1\right)=O\left(\frac{|E|}{B}+|V|\right)$ I/O operations.

Note that this algorithm is optimal when $|E| \geq|V| B$.

