
CSE	4502/5717	Big	Data	Analytics	
Notes	taken	by:	Yanting	Chen	
Lecture	6	–	02/12/2018	

Ø 	

	

	

	

	

	

𝑃𝑟𝑜𝑏 𝑟J − 𝑗
𝑛
𝑠 > 	 3𝛼

𝑛
𝑠

𝑙𝑜𝑔𝑛 ≤ 𝑛UV	

Ø To	begin	with,	all	the	keys	are	alive,	N=n;	

Repeat	

1. In	one	pass	through	the	data	pick	a	random	sample	S	

Each	alive	key	will	be	in	S	with	a	prob.	of	 d
ef
	

𝐸 𝑆 =
𝑀
2 	

2. Pick	 𝑙k	&	𝑙e	 from	S	such	that,	 	 	

Rank(𝑙k, 𝑆)	=	 𝑖 ⋅
q
f
− 4𝛼𝑠 ⋅ log𝑁	

	 	 	 	 	 	 	 	 	 	 and	Rank(𝑙e, 𝑆)	=	 𝑖 ⋅
q
f
+ 4𝛼𝑠 ⋅ log𝑁	

3. Do	one	more	pass	through	the	data	and	store	Y	=	{q:	q	is	alive	and	

	 𝑙k < 𝑞 ≤ 𝑙e}	in	the	disk;	

	

	

	

	

	

X	=	k1,k2...kn	

Rank(q,	s)	=	j	

Let	Rank(q,	X)	=	rj	

	

alive	keys	

> 𝒍𝟏	𝒂𝒏𝒅	 ≤ 𝒍𝟐 Y	

	 	 	 	 	 	 	 	 	 	 let	 𝑛k = |{𝑞: 𝑞	𝑖𝑠	𝑎𝑙𝑖𝑣𝑒	𝑎𝑛𝑑	𝑞 < 	 𝑙k}|;	

	 	 	 	 	 	 	 	 	 	 	 	 	 n2	=	 𝑞: 𝑞	𝑖𝑠	𝑎𝑙𝑖𝑣𝑒	𝑎𝑛𝑑	𝑞	 ≤ 𝑙e ;	

4. If	 𝑖 < 𝑛k	𝑜𝑟	𝑖 > 	𝑛e	

or	if	|Y|	>	 f
d�.�	 then	start	all	over;	

else	i	=	i	–	n1	and	N	=	|Y|;	

only	the	elements	in	Y	are	alive;	

	 	 	 	 	 	 Until	N	≤ M;

	 	 	 	 	 	 	 	 Identify	and	output	the	ith	smallest	from	the	alive	keys.	 	

Ø Analysis:	

	 In	step	1,	the	#	of	sample	keys	in	S	is	Binomial	with	parameters	N	and	 d
ef
	

	 	 	 Using	Chernoff	bounds,	|s|	=	 𝜃(𝑀)	

	 Expected	Rank	of	 𝑙k	 in	 𝑋 = [𝑖 ⋅ q
f
−	 4𝛼 ⋅ 𝑠 ⋅ log𝑁] f

q
	

	 	 	 	 	 	 	 =	 𝑖 −	 4𝛼 f
q
log𝑁	

	 	 	 Expected	Rank	of	 𝑙e	 in	 𝑋 = 𝑖 + 4𝛼	 f
q
log𝑁	

	

	

	

	

	

	

	

	

	

	

|Y|	 ≤	 𝑖 + 4𝛼 + 3𝛼 f
q
log𝑁 − [𝑖 − (4𝛼 + 3𝛼) f

q
log𝑁]	

	 	 	 ≤ 2 4𝛼 + 3𝛼 f
q
log𝑁	 with	a	prob.	of	 ≥ (1 − 𝑁UV)	

Ø w.h.p.	(with	high	probability)	

|Y|	=	 𝑂 4𝛼 + 3𝛼 f
d

log𝑁 	 	 	 	 	 	 note:	 𝑁 = 𝑀� 	→ log𝑁 = 𝑐 ⋅ log𝑀	 	

	 	 	 If	N	is	a	polynomial	in	M,	 	

	 	 	 then	|Y|	=	 𝑂(f
d�.�)	 w.h.p.	

Ø Example	

M	=	109,	N	≤ M4	

	 	 	 I/O	complexity:	 	

	 	 	 e�
�
+ �

d�.� ⋅
e
�
+ e�

d�.��
+ ⋯ 		 ≤ 2 + 𝜀

𝑛

𝐵
, 𝑓𝑜𝑟	𝑎𝑛𝑦	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝜀 > 0	

Ø A	Graph	Problem:	

Minimum	spanning	tree(MST)	

Problem:	

Input:	 	 	 a	weighted,	connected	and	undirected	graph,	G(V,E)	

Output:	 	 A	minimum	spanning	tree	for	G	

Ø Prim’s	algorithm	

Grow	a	subtree	by	adding	one	edge	at	a	time,	starting	with	the	lightest	edge.	

Let	x	be	any	node	outside	the	tree	

NEAR[x]	=	the	closest	tree	neighbor	of	x;	

1. pick	the	lightest	edge	e=(a,b)	in	E;	

2. for	every	u	∈	V-{a,b}	do

if	weight(u,a)	<	weight(u,b)	then	

NEAR[u]	=	a;	else	NEAR[u]=b;

3. for	u	∈	V-{a,b}	do	

insert	u	into	a	2-3	tree	Q	where	the	key	value	is	weight(u,	NEAR[u]);	

4. for	i=1	to	(n-2)	do	

find	the	node	u	in	Q	with	the	least	key;	

insert	(u,	NEAR[u])	into	T;	

for	every	w	∈	Adj(u)	do	 	 	 	 	 	 	 	 	 	 	 	 	 *Adj(u)	 →	 Adjacent	to	u	

	 if	weight(w,	NEAR[w])	>	weight(w,u)	then	

	 NEAR[w]	=	u;	

Ø Assume	that	the	input	is	in	adjacency	lists	form	

	
Ø Assume	that	 𝑀 = 𝜃(𝑛),	n	=	|V|.	This	means	that	Q	can	be	stored	in	core	

memory;	

Analysis:	

l Step1:	takes	
|§|
�
	 I/O	operations	

l Step2:	takes	 ≤ 2|𝑉|
𝐵 	 I/O	operations	

l Step3:	No	I/O	operations;	Let	 𝑑©be	the	degree	of	𝑢	for	any	𝑢 ∈ 𝑉.	

l Step4:	takes	 ≤ «¬
�

≤ «¬
�
+ 1©∈ = 𝑂 |𝐸|

𝐵 + |𝑉|©∈ 	 I/O	operations.	

Note	that	this	algorithm	is	optimal	when	 𝐸 ≥ 𝑉 𝐵.	

