
 1

CSE4502/5717:	Big	Data	Analytics	
Prof.	Sanguthevar	Rajasekaran	

Lecture	7	–	02/14/2018;	Notes	by	Aravind	Sugumar	Rajan	
Recap	from	last	class:	
	
Prim’s	Algorithm:	

• Grow	a	subtree	by	adding	one	edge	to	the	subtree	at	any	time	
• We	use	NEAR	Data	Structure	to	achieve	this	

	
Analysis:	
Step	1:	Picking	the	lightest	edge	in	E	takes		|"|

#
		I/O	operations;	

Step	2:	Calculating	NEAR	values	of	all	the	vertices	takes	|$|
#
		I/O	operations;	

Step	3:	Assuming	that	the	size	of	the	internal	memory	=	𝜃(|𝑉|),	the	priority	queue	can	be	kept	
in	memory;	so,	no	I/O	operations	are	involved	in	Step	3.	
Step	4:	Let	𝑑*	be	the	degree	of	the	node	u,	u	∈	V	-	{a,	b}.	In	Step	4	we	have	to	access	the	
neighbors	list	for	every	node	(other	than	a	and	b)	in	V.	As	a	result,	Step	4	takes	no	more	than	

-.
#*/$ 	I/O	operations.	

	
	 	 	 	 	 -.

#*/$ ≤	2|"|
#
	+	|V|	

	
∴ 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐼/𝑂	operations	=	𝑂 |"|

#
	+	 |V| 	 	

This	is	asymptotically	optimal	for	dense	graphs,	e.g.,	when	|E|	≥	B|V|.	
	
Best	known	algorithms:	
	

• A	Functional	Approach	to	External	Graph	Algorithms,	Abello	et	al.,	2002	
-	A	Randomized	algorithm	that	takes	𝑂 D($ E|"|)

#
	I/O	operations,	where	S(k)	stands	for	

the	number	of	I/O	operations	needed	to	sort	k	elements.	

• On	external-memory	MST,	SSSP	and	multi-way	planar	graph	separation,	Arge	et	al.,2004	
-	A	deterministic	algorithm	that	takes	𝑂 D($ E|"|)

#
log log |$|

I
	I/O	operations.	

	
Parallel	Disks	Model	(PDM):	This	model	has	been	proposed	to	deal	with	I/O	bottlenecks	that	
could	arise	while	dealing	with	massive	datasets.	We	assume	that	there	are	D	disks	(D	being	
more	than	1)	and	a	(sequential	or	parallel)	computer	with	a	core	memory	of	size	M.	The	goal	is	
to	devise	algorithms	for	solving	various	problems	on	the	PDM	such	that	the	number	of	parallel	
I/O	operations	is	minimized.	

 2

	
	
In	one	parallel	I/O	operation,	we	can	bring	a	block	of	data	from	each	of	the	D	disks.	We’ll	see	
how	to	sort	elements	on	a	PDM.	
	
Why	is	sorting	important?	
Estimates	indicate	that	there	is	approximately	a	40%	probability	that	any	machine	is	sorting	at	
any	particular	time.	
	
Problem:	Sort	n	elements	
Input:	Each	disk	has	J

K
	elements;	

Output:	Sorted	sequence	striped	across	all	the	disks;	
	
The	difficulty	in	this	model	is	to	ensure	that	in	every	parallel	I/O	operation	we	bring	one	(useful)	
block	from	every	disk.	
	
Many	known	PDM	sorting	algorithms	are	based	on	k-way	merge,	for	some	suitable	value	of	k	
(no	more	than	D).		
	
Assumptions:	

• M	=	𝜃(𝐵𝐷)	
	
A	typical	PDM	sorting	algorithm:	
	
Step	1:	Form	runs	of	length	M	each;	this	takes	1	pass	through	the	data;	we	have	J

I
	runs;	

Step	2:	Use	k-way	merge	to	merge	these	J
I
	runs;	It	is	desirable	to	keep	k	as	close	to	D	as	

possible.	
	
A	known	lower	bound	for	sorting:	
	

Ω J	
K#

OPQ	RS
OPQST

	parallel	I/O	operations	are	needed	to	sort	n	elements	on	the	Parallel	Disks	Model.	

	

 3

Note:	One	pass	through	the	data	means	 J
K#
	I/O	operations.	

	
Striping	the	data:	Each	run	is	stored	in	the	disks	such	that	the	first	block	is	stored	in	one	disk,	
the	next	block	is	stored	in	the	next	disk,	and	so	on.	This	process	is	called	‘striping	the	data’.	
	
Here	is	one	way	of	striping:	
	

	
Consider	the	case	where	we	have	D	runs.	If	we	want	to	get	the	leading	block	from	each	of	the	
runs	and	if	we	use	the	above	way	of	striping,	then	we	will	need	D	I/O	operations,	since	all	the	
leading	blocks	are	in	the	first	disk!	We	can	avoid	this	inefficiency,	by	using	the	following	
approach:	
	

	
	
	

 4

Disk	Striped	Mergesort	(DSM):	is	a	simple	algorithm	that	stripes	all	the	runs	starting	from	the	
first	disk.	

-It	uses	R-way	merge,	where	R	=	I
K#
	(a	constant).	

	
Start	by	forming	runs	of	length	of	M	each.	
Bring	BD	elements	from	each	run.	
	

	
	
	
Start	merging	them.	
When	BD	elements	are	ready	in	the	output	buffer,	write	them	onto	the	disks;	
When	we	run	out	of	elements	from	any	run,	bring	BD	elements	from	that	run;	

The	number	of	I/O	operations	taken	by	the	algorithm	=	𝑂 J
K#

OPQ(RS)

OPQ(SUT)
.	

R-way	merge:	
	

	
	
	

 5

No	of	parallel	I/O	operations	=	 J
K#

OPQ	 RS
OPQW

.	

Since	R	=	𝜃(1)	for	DSM,	this	algorithm	is	not	asymptotically	optimal.	
	
Example:	
	
n	=	𝑀Z 	for	some	constant	C	
	

Lower	bound	for	sorting	=	Ω J	
K#

OPQ	I

OPQST
	I/O	operations.	

No.	of	I/O	operations	for	DSM	=	Ω J	
K#
log	𝑀 ,	which	is	too	much.	

	
(l,	m)-mergesort	is	a	simple	algorithm.	We	introduce	the	odd-even	merge	sort	and	the	s2-way	
merge	sort	before	discussing	the	(l,	m)-merge	sort.	
	
Odd-Even	Mergesort:	
	
Let	X	=	𝑘\,	𝑘],……,	𝑘J	
	
Algorithm:	
	
Partition	X	into	𝑋\	&	𝑋]	with	|𝑋\|	=	|𝑋]|	=	

J
]
;	

Sort	𝑋\	&	𝑋]	recursively	to	get	𝑌\	&	𝑌],	respectively.	
Merge	𝑌\	&	𝑌]	using	odd-even	merge.	
	
	
	
	
	
	
Odd-Even	Merge:	
	
Input:	Two	sorted	sequences	
	 𝑌\	=	𝑎\, 𝑎],…….,	𝑎J			&	
	 𝑌]	=	𝑏\, 𝑏],…….,	𝑏J	
Output:	Merge	of	𝑌\	, 𝑌]	
	
Example:	
	

𝑌\	=	8,	12,	15,	36	 	 	 	 	 𝑌]	=	3,	11,	28,	46	

 6

	
				 	 𝑌\	 	 	 	 					 	 𝑌]	
				 	 	 	 	
𝑌\bKK=	8,	15.					𝑌\"$"c=	12,	36	 	 𝑌]bKK=	3,	28	 	 𝑌]"$"c=	11,	46	
	

	
	
3,	8,	15,	28						 11,	12,	36,	46		
	
	
					3,	11,	8,	12,	15,	36,	28,	46	
	
	
					3,	8,	11,	12,	15,	28,	36,	46	

	
	
Algorithm:	
	
Let	𝑌\	=	𝑎\,	𝑎],…..,	𝑎J	&	𝑌]	=	𝑏\,	𝑏],…..,	𝑏J;	
	
Step	1:	Let	𝑌\bKK=𝑎\,	𝑎e,…..,	𝑎Jf\	
	 								𝑌\"$"c=𝑎],	𝑎g,…..,	𝑎J	
																		𝑌]bKK=𝑏\,	𝑏e,…..,	𝑏Jf\	
																		𝑌]"$"c=𝑏],	𝑏g,…..,	𝑏J	
	
Step	2:	Recursively	merge	𝑌\bKK	and	𝑌]bKK	to	get	𝑍\	=	𝑐\,	𝑐],…..,	𝑐J;	
	 		Recursively	merge	𝑌\"$"c	and	𝑌]"$"c	to	get	𝑍]	=	𝑑\,	𝑑],…..,	𝑑J;	
Step	3:	Shuffling	operation:	Shuffle	𝑍\	and	𝑍]	to	get	Q	=	𝑐\,	𝑑\,	𝑐],	𝑑],…., 𝑐J,	𝑑J;	
Step	4:	Perform	one	compare	exchange	operation	as	shown	below:	
	 	 𝑐\,	𝑑\,	𝑐],	𝑑],……,	𝑐Jf\,	𝑑Jf\, 𝑐J,	𝑑J	
	
	
Zero-One	Lemma:	
If	an	oblivious	comparison-based	sorting	algorithm	correctly	sorts	every	sequence	of	length	n	
that	has	only	zeros	and	ones,	then,	it	correctly	sorts	every	sequence	of	length	n	of	arbitrary	
elements.	
	
Oblivious	comparison:	Comparison	based	on	position	of	keys	only;	
An	example	for	a	sorting	algorithm	that	is	not	oblivious	will	be	bucket	sort.	We’ll	use	zero-one	
lemma	to	prove	the	correctness	of	the	odd-even	merge	sort	algorithm.	

RECURSIVE
MERGE

RECURSIVE
MERGE

SHUFFLE

COMPARISON EXCHANGE

Unshuffle
operation

