CSE4502/5717: Big Data Analytics

Prof. Sanguthevar Rajasekaran

Lecture 8-02/19/2018; Notes by Saumya Gupta

- Simple Randomized Merge Sort (SRM)

It is one of the sorting algorithms used in Parallel Disk Model.

1. Form Runs of length M each.
2. Use D-way Merge;

Any RUN is STRIPED starting from a Random Disk Chosen Randomly

Disk:
1
23
34
4
D
FACT: SRM is asymptotically optimal in expectation if

$$
M=\Omega(B D \log D)
$$

- Recap From Last class:

We saw ODD-EVEN Merge Algorithm :
If X and Y are two sorted sequences, with $|X|=|Y|=n$, we can merge them as follows:

To prove correctness of this algorithm, we will apply 0-1 lemma .

- PROOF OF CORRECTNESS (USING 0-1 LEMMA)

0-1 Lemma states that: If an oblivious comparison-based sorting algorithm correctly sorts every sequence of length n that has only zeros and ones, then, it correctly sorts every sequence of length n of arbitrary elements.

Proof of correctness of the odd-even merge algorithm (using the zero-one lemma):
Let $X=x_{1}, x_{2}, x_{3}, x_{4}, \ldots x_{n}$ where $x_{i}=0$ or 1 for all i
Let $\mathrm{Y}=\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \ldots \ldots . . \mathrm{y}_{\mathrm{n}}$ where $\mathrm{y}_{\mathrm{i}}=0$ or 1 for all i
Let n_{1} be the number of zeros in X .
Let n_{2} be the number of zeros in Y .
Number of zeros in $\mathrm{Z}_{1}=\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil$
Number of zeros in $\mathrm{Z}_{2}=\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor$
These two numbers differ by at most 2.

Case 1: Number of zeroes in Z_{1} equals the number of zeroes in Z_{2}.

Shuffle:

Case 2: These two numbers differ by 1

Shuffle:

Case 3: These two numbers differ by 2

(compare-exchange cleans the boxed 'dirty sequence')

$$
Q=0000 \ldots 00001111 \ldots 1111
$$

Therefore, in all the three cases, the algorithm works correctly!

- SORTING ON THE MESH(THOMPSON \& KUNG 1977)

The idea was to partition the mesh into sub meshes of size $\frac{n}{s} \times \frac{n}{s}$, sort each sub mesh, and merge the s^{2} sorted sub meshes using the odd-even merge algorithm

$$
n \times n
$$

$\underline{S^{2}-\text { Way MERGE SORT (based on the idea of odd-even merge): }}$

In the above figure, $\mathrm{q}=\mathrm{s}^{2}$. It can be shown that the length of the dirty sequence in the shuffled sequence is $<=2 s^{2}$. (To clean up the dirty sequence, some local sorting is used).

- (l,m) MERGE SORT (Rajasekaran 1999)

Input : $\mathrm{X}=\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}$
Output: Sorted X
Algorithm :

1. Partition X into $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots . . \mathrm{X}_{1}$ such that $\left|\mathrm{X}_{\mathrm{i}}\right|=\frac{n}{l}$;
2. for $1 \leq i \leq l$ do

Sort each X_{i} recursively, to get Y_{i};
3. Merge $Y_{1}, Y_{2}, \ldots Y_{1}$ using the (l, m) Merge Algorithm.

Algorithm (l, m)-Merge
 Input : Sorted sequences $Y_{1}, Y_{2}, \ldots Y_{1}$
 Output : Merge of $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots \mathrm{Y}_{1}$

Algorithm :
Let $\mathrm{Y}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}{ }^{1}, \mathrm{y}_{\mathrm{i}}{ }^{2}, \ldots \ldots . . \mathrm{y}_{\mathrm{i}}{ }^{\mathrm{r}} 1 \leq i \leq l$
for $1 \leq i \leq l$ do
Unshuffle Y_{i} into m parts: $Y_{i}{ }^{1}, Y_{i}{ }^{2}, \ldots \ldots . . Y_{i}{ }^{m}$
if $Y_{i}=y_{i}{ }^{1}, y_{i}{ }^{2}, \ldots \ldots . . y_{i}{ }^{r}$
then $Y_{i}{ }^{1}=y_{i}{ }^{1}, y_{i}{ }^{m+1}, y_{i}{ }^{2 m+1}, \ldots$.

$$
Y_{i}^{2}=y_{i}^{2}, y_{i}^{m+2}, y_{i}^{2 m+2}, \ldots \ldots \ldots .
$$

.

$$
Y_{i}^{m}=y_{i}^{m}, y_{i}^{2 m}, y_{i}^{3 m}, \ldots
$$

1. for $1 \leq i \leq m$ do

Recursively merge $Y_{1}{ }^{i} Y_{2}{ }^{i}, \ldots, Y_{1}{ }^{i}$ to get $Z_{i}=Z_{1}, Z_{2}, \ldots \ldots$.
Merge $Y_{1}{ }^{1}, Y_{2}{ }^{1}, \ldots \ldots ~ Y_{1}{ }^{1}$; to get Z_{1}
Merge $Y_{1}{ }^{2}, Y_{2}{ }^{2}, \ldots Y_{1}{ }^{2}$; to get Z_{2}

Merge $Y_{1}{ }^{m}, Y_{2}{ }^{m}, \ldots \ldots Y_{1}^{m}$; to get Z_{m}

$$
\left|\mathrm{Z}_{\mathrm{i}}\right|=\frac{l r}{m}=\frac{n}{m}
$$

2. Shuffle $Z_{1}, Z_{2}, \ldots \ldots . . Z_{m}$ to get
$A=a_{1}, a_{2}, \ldots a_{n}$
3. Partition A into blocks of size Im each

$>$ Sort and Merge $A_{1} \& A_{2} ; A_{3} \& A_{4} ; \ldots$.
$>$ Sort and Merge $A_{2} \& A_{3} ; A_{4} \& A_{5} ; \ldots$.

NOTE: The length of the Dirty Sequence is $\leq l m$.
To Prove correctness of (l, m)-merge algorithm, we can apply 0-1 lemma:
Let n_{i} be the number of zeroes in $\mathrm{Y}_{\mathrm{i}}, 1 \leq i \leq l$
Number of zeroes in $\mathrm{Z}_{1}: \sum_{i=1}^{l}\left\lceil\frac{n_{i}}{m}\right\rceil$
Number of zeroes in $\mathrm{Z}_{\mathrm{m}}: \sum_{i=1}^{l}\left\lfloor\frac{n_{i}}{m}\right\rfloor$
These two numbers differ by at most l.

The number of columns that contribute to the dirty sequence is at most l, and they contain at most lm elements.

Therefore, the length of dirty sequence is $\leq l \mathrm{~m}$.

Next, we will apply the (l, m)-merge sort algorithm to the Parallel Disk Model and calculate the number of I/O operations.

