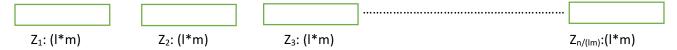
Lecture - 9 (02/21/2018)

Big Data by Prof. Raj.

Documented by: Vinayak Gupta

Professor discussed about the doubts faced by students in the Homework 1.

In the (I,m)-merge algorithm, we shuffle the recursively merged sequences to get a sequence Z. The length of the dirty sequence in Z is no more than Im. We can clean up the dirty sequence as follows:



 Z_1 denotes the sequence of the first Im elements of Z; Z_2 denotes the next Im elements of Z; and so on. Thus Z is partitioned into Z_1 , Z_2 ,, $Z_{n/(Im)}$.

Sort Z_1 and Z_2 , send the first Im elements to the disk.

Similarly, sort Z_2 and Z_3 , send the first Im elements to the disk; and so on.

Example:

N = M \sqrt{M} ; D = B = \sqrt{M}

Let $X = K_1, K_2, K_3, \dots, K_n$. Input is given across the D disks:

*	*	*		*	
*	*	*		*	
*	*	*		*	
Disk 1	Disk 2	Disk 3	3	Disk D	

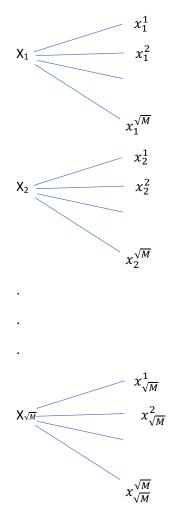
Steps Involved in the algorithm.

<u>Use</u>: $I=\sqrt{M}$; $m=\sqrt{M}$

Step 1: Form runs of length M each.

Let these runs be $X_1,\,X_2,\,X_3\,.....\,X_{\sqrt{M}}\,.$

Step 2: Unshuffle the above runs into \sqrt{M} parts:



How will we write the unshuffled sequences in the disk? Use the following strategy:

<i>x</i> ¹ ₁	x_{2}^{1}		x_{3}^{1}			
	x_{1}^{2}		x_{3}^{2}			
			x_{1}^{3}			
]
Disk 1	Disk 2			3	Disk D)

Step 1 and Step 2 can be done in one pass through the data. This is because we can bring M elements to the core memory, sort them, and unshuffle them.

Step 3:

```
For 1 \le i \le \sqrt{M} do
Merge x_1^i, x_2^i, x_3^i, x_4^i ... ... ... ... ... ... ... x_{\sqrt{M}}^i to get Y_i
```

This takes one pass through the data.

Step 4:

```
Shuffle Y_1, Y_2, Y_3..... Y_{\sqrt{M}} to get Z;
```

Step 5:

Clean up the dirty sequence. The length of the dirty sequence \leq M.

Assume that the core memory is of size 2DB.

Step 4 and Step 5 can be done in one pass together.

Thus the total number of passes = 3.

Chaudhry and Cormen 2002:

We can sort $\frac{M.\sqrt{M}}{2}$ elements in 3 passes through the data when B = D = \sqrt{M} .

They have used the column sorting algorithm (of Leighton).

Exercise:

Let T(i, j) be the number of passes needed to merge i sequences of length j each.

Problem 1:

Show that
$$T(\sqrt{M}, M) = 3$$
 when $\frac{M}{B} \ge \sqrt{M}$. (Hint : use I = m = \sqrt{M}).

Problem 2:

Show that
$$T(\frac{M}{B}, M) = 3$$
 when $\frac{M}{B} < \sqrt{M}$. (Hint: Use I = m = $\frac{M}{B}$).

General Algorithm:

Step 1: In one pass through the data form runs of length M each.

Step 2: We have to merge $\frac{N}{M}$ runs of length M each.

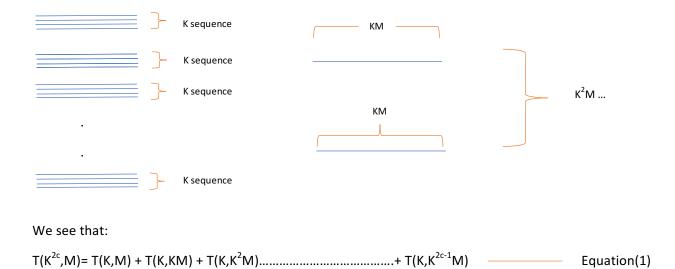
What is
$$T(\frac{N}{M}, M)$$
?

Case 1:

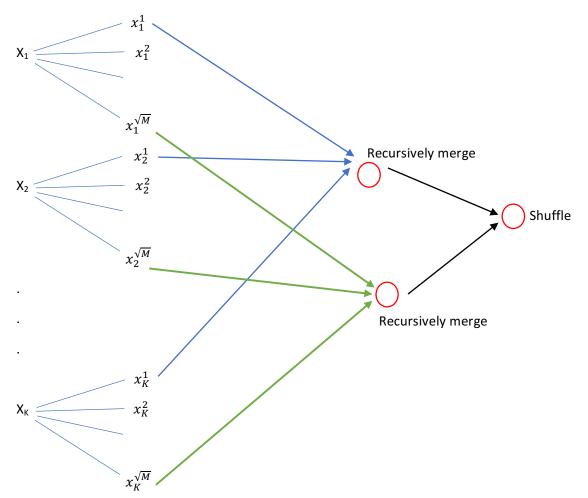
$$\frac{M}{B} \ge \sqrt{M}, \text{ we will use } I = m = \sqrt{M}.$$

Let K= \sqrt{M} , and $\frac{N}{M} = K^{2c} = M^{c}$
 $c. \log M = \log \left(\frac{N}{M}\right)$
And $c = \frac{\log(\frac{N}{M})}{\log M}$

We use K-way merge to merge K^{2c} sequences of length M each. Specifically, we merge K sequences at a time:



To Compute T(K,KⁱM) (for any value of i):



At the last (i.e., the rightmost) node we need to shuffle and clean up the sequence obtained by shuffling. Note that $|X_p^j| = k^{(i-1)} M$, for $1 \le p, j \le K$.

The unshuffling step requires one pass.

The recursive merging step takes $T(K, K^{(i-1)}M)$ passes.

Shuffling and cleaning up can be done in one pass through the data. As a result, we get:

 $T(K, K^{i}M) = T(K, K^{(i-1)}M) + 2$

= 2i+ T(K, M)= 2i + 3 _____Equation (2)

Substitute Equation (2) in Equation (1) to get:

T (K^{2c}, M) =
$$\sum_{i=0}^{2c-1} (2i + 3)$$

= $2 \sum_{i=0}^{2c-1} (i) + 6c$
= $\frac{2*(2c-1)*(2c)}{2} + 6c$
= $4c^2 + 4c$.

We'll consider the case of $\frac{M}{B} < \sqrt{M}$ in the next lecture.