
Lecture	-	9	(02/21/2018)	

Big	Data	by	Prof.	Raj.	

Documented	by:	Vinayak	Gupta	

Professor	discussed	about	the	doubts	faced	by	students	in	the	Homework	1.	

In	the	(l,m)-merge	algorithm,	we	shuffle	the	recursively	merged	sequences	to	get	a	sequence	Z.	The	
length	of	the	dirty	sequence	in	Z	is	no	more	than	lm.	We	can	clean	up	the	dirty	sequence	as	follows:	

																																																																																																									……………………………………………………	

					Z1:	(l*m)	 	 Z2:	(l*m)	 									Z3:	(l*m)																																																																							Zn/(lm):(l*m)	

Z1	denotes	the	sequence	of	the	first	lm	elements	of	Z;	Z2	denotes	the	next	lm	elements	of	Z;	and	so	on.	
Thus	Z	is	partitioned	into	Z1,	Z2,	………,Zn/(lm).	

Sort	Z1	and	Z2,	send	the	first	lm	elements	to	the	disk.	

Similarly,	sort	Z2	and	Z3,	send	the	first	lm	elements	to	the	disk;	and	so	on.	

Example:		

N	=	M 𝑀;				D	=	B	=	 𝑀	

Let	X	=	K1,	K2,	K3,………………	Kn.	Input	is	given	across	the	D	disks:	

	

																

	

																										

	

	

	

										Disk	1											Disk	2														Disk	3			……………………………………..				Disk	D		

Steps	Involved	in	the	algorithm.	

Use:	l= 𝑀	;			m= 𝑀		

Step	1:	Form	runs	of	length	M	each.	

	 Let	these	runs	be	X1,	X2,	X3	……………….	X 𝑀	.	

Step	2:	Unshuffle	the	above	runs	into	 𝑀	parts:	

	 		

*	

*	 *	 *	 *	

*	

*	

*	*	

*	 *	 *	

	

	

	

																																																		𝑥##			

X1																																																		𝑥#$	

																																																																																																			 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 				𝑥#
&	

																																																		𝑥$#			

X2																																																		𝑥$$	

																																																																																																			 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 				𝑥$
&	

	 .	

	 .	

	 .	

																																																		𝑥 &
# 			

X 𝑀																																																	𝑥 &
$ 	

																																																																																																			 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 				𝑥 &
&	

How	will	we	write	the	unshuffled	sequences	in	the	disk?	Use	the	following	strategy:	

																																				

																																																			

	

	

	

										

	

										Disk	1															Disk	2																							Disk	3			…………………………..					Disk	D		

																								

𝑥##	 𝑥$#	 𝑥'#	

𝑥#$	 𝑥'$	

𝑥#'	

Step	1	and	Step	2	can	be	done	in	one	pass	through	the	data.	This	is	because	we	can	bring	M	elements	to	
the	core	memory,	sort	them,	and	unshuffle	them.	

Step	3:		

	 For	1	≤	i	≤	 𝑀	do	

	 	 Merge	𝑥#(,		𝑥$(, 𝑥'(, 	𝑥*(………………………………… . 𝑥 &
(to	get	Yi	

	 This	takes	one	pass	through	the	data.	

Step	4:	

	 Shuffle	Y1,	Y2,	Y3…………………..	Y 𝑀	to	get	Z;	

Step	5:		

	 Clean	up	the	dirty	sequence.	The	length	of	the	dirty	sequence	≤	M.	

Assume	that	the	core	memory	is	of	size	2DB.	

																																																																																																										

												Z1																								Z2																										Z3																																																																											

	

Step	4	and	Step	5	can	be	done	in	one	pass	together.	

Thus	the	total	number	of	passes	=	3.	

Chaudhry	and	Cormen	2002:	

We	can	sort	&. &
$

	elements	in	3	passes	through	the	data	when	B	=	D	=	 𝑀.	

They	have	used	the	column	sorting	algorithm	(of	Leighton).	

	

	

Exercise:	

Let	T(i,	j)	be	the	number	of	passes	needed	to	merge	i	sequences	of	length	j	each.	

Problem	1:	

Show	that	T(𝑀,M)	=	3	when	&
-
	≥	 𝑀.					(Hint	:	use	l	=	m	=	 𝑀).	

Problem	2:	

	 Show	that	T(&
-
,𝑀)	=	3		when	&

-
	<	 𝑀.								(Hint:	Use	l	=	m	=	&

-
).	

	

Shuffled	
Sequence	

General	Algorithm:	

Step	1:	In	one	pass	through	the	data	form	runs	of	length	M	each.	

Step	2:	We	have	to	merge	/
&
	runs	of	length	M	each.	

	 What	is	T(/
&
,𝑀)?	

Case	1:	

	 &
-
	≥	 𝑀,	we	will	use	l	=	m	=	 𝑀.	

Let	K=	 𝑀,	and	/
&
	=		𝐾$1 	=	𝑀1 	

	 𝑐. log𝑀 = log	(/
&
)	

	 And	𝑐 =
89:(;<)

89:&
	

We	use	K-way	merge	to	merge	K2c	sequences	of	length	M	each.	Specifically,	we	merge	K	sequences	at	a	
time:				

																																																																																																																													

	

	

	

	 .	

	 .	

	

																																																														
We	see	that:	

T(K2c,M)=	T(K,M)	+	T(K,KM)	+	T(K,K2M)………………………………….+	T(K,K2c-1M)																																		Equation(1)	

	

	

	

	

	

	

	

K	sequence	

K	sequence	

K	sequence	

K	sequence	

KM	

KM	
K2M	…	

To	Compute	T(K,KiM)	(for	any	value	of	i):	

																																																	𝑥##																																							

X1																																																		𝑥#$	

																																																																																																			 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 				𝑥#
&	

																																																		𝑥$#			

X2																																																		𝑥$$	

																																																																																																			 	 	 	 	 										Shuffle	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 				𝑥$
&	

	 .	

	 .	

	 .	

																																																		𝑥=# 			

XK																																																	𝑥=$ 	

																																																																																																			 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 				𝑥=
&	

	

At	the	last	(i.e.,	the	rightmost)	node	we	need	to	shuffle	and	clean	up	the	sequence	obtained	by	shuffling.	

Note	that	|𝑋?
@|=k(i-1)	M,	for	1 ≤ 𝑝, 𝑗 ≤ 𝐾.	

The	unshuffling	step	requires	one	pass.	

The	recursive	merging	step	takes		T(K,	K(i-1)M)	passes.	

Shuffling	and	cleaning	up	can	be	done	in	one	pass	through	the	data.	As	a	result,	we	get:	

T(K,	KiM)=	T(K,	K(i-1)M)	+	2	

	 						.	

	 						.	

	 		=	2i+	T(K,	M)=	2i	+	3																																				Equation	(2)	

Substitute	Equation	(2)	in	Equation	(1)	to	get:	

Recursively	merge	

Recursively	merge	

T	(K2c,	M)	=	 (2𝑖 + 3)$1J#
(KL 	

	 			=	2	 𝑖 + 	6𝑐$1J#
(KL 	

	 			=	$∗ $1J# ∗($1)
$

	+	6c	

			=	4c2+4c.	

We’ll	consider	the	case	of	&
-
< 𝑀	in	the	next	lecture.	

