CSE 5500 Algorithms. Fall 2018

Exam I (Model) Solutions

1. Here is a Las Vegas algorithm:

repeat

1) Pick a random sample S from $A[1: n]$ of size $8 \alpha \sqrt{n} \log n$;
2) Sort the sample S, scan through it to see if there are multiple copies of any element. If so, output this element and quit;

forever

Analysis: Let X be the number of copies of the repeated element in the sample. Clearly, X is binomially distributed with parameters $8 \alpha \sqrt{n} \log n$ and $\frac{\sqrt{n}}{n}$. The mean of X is $8 \alpha \log n$. Using Chernoff bounds, $\operatorname{Pr}[X<(1-\epsilon) 8 \alpha \log n] \leq \exp \left(-\frac{\epsilon^{2} 8 \alpha \log n}{2}\right)$. Picking $\epsilon=1 / 2, \operatorname{Pr}[X<$ $4 \alpha \log n] \leq n^{-\alpha}$. Thus it follows that the repeat loop is executed only once with high probability.
Step 1 takes $O(\sqrt{n} \log n)$ time. Sorting in step 2 takes $O\left(\sqrt{n} \log ^{2} n\right)$ time. Looking for the repeated element in the sorted sample takes $O(\sqrt{n} \log n)$ time. Put together, the run time of the algorithm is $\widetilde{O}\left(\sqrt{n} \log ^{2} n\right)$ time.
2. Here is a Monte Carlo algorithm: Pick a random sample S of $k \alpha \log n$ elements from X, find and output the element of S whose rank in S is $\frac{3 s}{8}$, where $s=|S|$. We can use the BFPRT algorithm to select this element of S. Clearly, this algorithm runs in $O(\log n)$ time. We now have to show that this output will be correct with high probability.

Let M be the output of the algorithm. We know that $\operatorname{rank}(M, S)=\frac{3 s}{8}$. Let r_{M} be the rank of M in X. Using the sampling lemma (in item 6 of the Helpsheet), Prob. $\left[\left|r_{M}-\frac{3 s}{8} \frac{n}{s}\right|>\sqrt{3 \alpha} \frac{n}{\sqrt{s}} \sqrt{\log n}\right] \leq n^{-\alpha}$. For a choice of $k=192$, this inequality becomes: Prob. $\left[\left|r_{M}-\frac{3 n}{8}\right|>\frac{n}{8}\right] \leq n^{-\alpha}$.
3. Let the run time of \mathcal{A} be $T_{\mathcal{A}}$ and that of \mathcal{B} be $T_{\mathcal{B}}$. Then the recurrence relation for $T_{\mathcal{A}}$ is: $T_{\mathcal{A}}(n)=36 T_{\mathcal{A}}(n / 6)+\Theta(n)$. Here $a=36, b=6$, and $f(n)=\Theta(n) . n^{\log _{b} a}=n^{2}$. Case 1 of Master theorem applies. Thus, $T_{\mathcal{A}}(n)=\Theta\left(n^{2}\right)$.
The recurrence relation for $T_{\mathcal{B}}$ is: $T_{\mathcal{B}}(n)=\sqrt{n} T_{\mathcal{B}}(\sqrt{n})+n$. Master theorem does not apply. We can use repeated substitutions here. Assume that the base case is: $T_{\mathcal{B}}(n)=1$ for $n \leq 4$. We have:

$$
\begin{aligned}
T_{\mathcal{B}}(n)=\sqrt{n} T_{\mathcal{B}}(\sqrt{n})+n= & \sqrt{n}\left[n^{1 / 4} T_{\mathcal{B}}\left(n^{1 / 4}\right)+\sqrt{n}\right]+n=n^{1-1 / 2^{2}} T_{\mathcal{B}}\left(n^{1 / 2^{2}}\right)+2 n \\
& =n^{1-1 / 2^{3}} T_{\mathcal{B}}\left(n^{1 / 2^{3}}\right)+3 n .
\end{aligned}
$$

After making $i-1$ substitutions we see that: $T_{\mathcal{B}}(n)=n^{1-1 / 2^{i}} T_{\mathcal{B}}\left(n^{1 / 2^{i}}\right)+i n$. The base case is reached when $n^{1 / 2^{i}}=4$, i.e., when $i=\log \log n-1$. Substituting this value of i in the general expression we see that $T_{\mathcal{B}}(n)=\Theta(n \log \log n)$.
As a result, \mathcal{B} has a better run time than \mathcal{A} and hence \mathcal{B} is preferable.
4. We can first scan through the elements of X and partition them into four parts X_{a}, X_{b}, X_{c}, and X_{d}, where $X_{a}=\left\{q: q \in X\right.$ and $\left.q \in\left[a, a+n^{10}\right]\right\}, X_{b}=\left\{q: q \in X\right.$ and $\left.q \in\left[b, b+n^{20}\right]\right\}$, and so on. This partitioning can be done with at most 6 comparisons per input key and hence this partitioning takes a total of $O(n)$ comparisons. After partitioning X we sort X_{a}, X_{b}, X_{c}, and X_{d} separately and independently. To sort X_{a}, we subtract a from each key of X_{a}. Let the resultant sequence be X_{a}^{\prime}. Clearly, the keys in X_{a}^{\prime} are integers in the range $\left[0, n^{10}\right]$ and hence can be sorted in $O\left(\left|X_{a}\right|\right)$ time using the integer sorting algorithm. In a similar manner we sort X_{b}, X_{c}, and X_{d} in time $O\left(\left|X_{b}\right|\right), O\left(\left|X_{c}\right|\right)$, and $O\left(\left|X_{d}\right|\right)$, respectively. As a result, the total time needed to sort these four parts of X is $O(n)$.
Finally, we output X_{a} in sorted order followed by X_{b} in sorted order, X_{c} in sorted order, and X_{d} in sorted order. The total run time of the entire algorithm is $O(n)$.
5. Let X be the given sequence of n keys. We partition X into groups $G_{1}, G_{2}, \ldots, G_{n / 3}$ of size 3 each. Let the medians of these groups be $M_{1}, M_{2}, \ldots, M_{n / 3}$, respectively. Let M be the median of these medians. We then employ the quickselect algorithm with M as the pivot. Let $X_{1}=\{q \in X: q<M\}$ and $X_{2}=\{q \in X: q>M\}$. There are $n / 6$ groups for which the medians are $\leq M$. In each such group there will be at least 2 elements that are $\leq M$. Therefore, at least $n / 3$ elements of X will be $\leq M$. This means that $\left|X_{2}\right| \leq \frac{2}{3} n$ and for similar reasons $\left|X_{2}\right| \leq \frac{2}{3} n$.
Thus, if $T(n)$ is the run time of this algorithm on any input of size n and for any i, we have: $T(n) \leq T\left(\frac{n}{3}\right)+T\left(\frac{2}{3} n\right)+\Theta(n)$. By induction we see that $T(n)=O(n \log n)$.
6. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Construct two polynomials $f(x)=$ $\Pi_{i=1}^{n}\left(x-a_{i}\right)$ and $g(x)=\Pi_{i=1}^{n}\left(x-b_{i}\right)$. The problem of checking if A and B are identical can be reduced to the problem of checking if $f(x)$ and $g(x)$ are identical. We can use fingerprinting to do this in $O(n)$ time as follows. Let \mathcal{S} be the set of integers in the range $\left[1, n^{\alpha+1}\right]$. Pick a random integer r from \mathcal{S}, evaluate $f(r)$ and $g(r)$, and check if $f(r)=g(r)$. If $f(r)=g(r)$, then output: " A and B are identical"; else output: " A and B are not identical".
Clearly, if $f(r) \neq g(r)$, then A and B are not identical. If A and B are identical, then the above algorithm will never give an incorrect answer. If A and B are not identical, what is the probability that $f(r)=g(r)$? Note that the polynomial $h(x)=f(x)-g(x)$ has at most n distinct zeros. Therefore, Prob. $[f(r)=g(r)] \leq \frac{n}{n^{\alpha+1}}=n^{-\alpha}$.

