
CSE 5500 Algorithms. Fall 2018

Exam I (Model) Solutions

1. Here is a Las Vegas algorithm:

repeat

1) Pick a random sample S from A[1 : n] of size 8α
√
n log n;

2) Sort the sample S, scan through it to see if there are multiple copies

of any element. If so, output this element and quit;

forever

Analysis: Let X be the number of copies of the repeated element in the sample. Clearly,

X is binomially distributed with parameters 8α
√
n log n and

√
n
n . The mean of X is 8α log n.

Using Chernoff bounds, Pr[X < (1−ε)8α log n] ≤ exp
(
− ε28α logn

2

)
. Picking ε = 1/2, Pr[X <

4α log n] ≤ n−α. Thus it follows that the repeat loop is executed only once with high

probability.

Step 1 takes O(
√
n log n) time. Sorting in step 2 takes O(

√
n log2 n) time. Looking for the

repeated element in the sorted sample takes O(
√
n log n) time. Put together, the run time of

the algorithm is Õ(
√
n log2 n) time.

2. Here is a Monte Carlo algorithm: Pick a random sample S of kα log n elements from X, find

and output the element of S whose rank in S is 3s
8 , where s = |S|. We can use the BFPRT

algorithm to select this element of S. Clearly, this algorithm runs in O(log n) time. We now

have to show that this output will be correct with high probability.

Let M be the output of the algorithm. We know that rank(M,S) = 3s
8 . Let rM

be the rank of M in X. Using the sampling lemma (in item 6 of the Helpsheet),

Prob.
[
|rM − 3s

8
n
s | >

√
3α n√

s

√
log n

]
≤ n−α. For a choice of k = 192, this inequality becomes:

Prob.
[
|rM − 3n

8 | >
n
8

]
≤ n−α. 2

3. Let the run time of A be TA and that of B be TB. Then the recurrence relation for TA is:

TA(n) = 36TA(n/6) + Θ(n). Here a = 36, b = 6, and f(n) = Θ(n). nlogb a = n2. Case 1 of

Master theorem applies. Thus, TA(n) = Θ(n2).

The recurrence relation for TB is: TB(n) =
√
nTB(

√
n) + n. Master theorem does not apply.

We can use repeated substitutions here. Assume that the base case is: TB(n) = 1 for n ≤ 4.

We have:

TB(n) =
√
nTB(

√
n) + n =

√
n[n1/4TB(n1/4) +

√
n] + n = n1−1/2

2
TB(n1/2

2
) + 2n

= n1−1/2
3
TB(n1/2

3
) + 3n.



After making i−1 substitutions we see that: TB(n) = n1−1/2
i
TB(n1/2

i
) + in. The base case is

reached when n1/2
i

= 4, i.e., when i = log log n−1. Substituting this value of i in the general

expression we see that TB(n) = Θ(n log log n).

As a result, B has a better run time than A and hence B is preferable.

4. We can first scan through the elements of X and partition them into four parts Xa, Xb, Xc,

and Xd, where Xa = {q : q ∈ X and q ∈ [a, a + n10]}, Xb = {q : q ∈ X and q ∈ [b, b + n20]},
and so on. This partitioning can be done with at most 6 comparisons per input key and hence

this partitioning takes a total of O(n) comparisons. After partitioning X we sort Xa, Xb, Xc,

and Xd separately and independently. To sort Xa, we subtract a from each key of Xa. Let

the resultant sequence be X ′a. Clearly, the keys in X ′a are integers in the range [0, n10] and

hence can be sorted in O(|Xa|) time using the integer sorting algorithm. In a similar manner

we sort Xb, Xc, and Xd in time O(|Xb|), O(|Xc|), and O(|Xd|), respectively. As a result, the

total time needed to sort these four parts of X is O(n).

Finally, we output Xa in sorted order followed by Xb in sorted order, Xc in sorted order, and

Xd in sorted order. The total run time of the entire algorithm is O(n).

5. Let X be the given sequence of n keys. We partition X into groups G1, G2, . . . , Gn/3 of size

3 each. Let the medians of these groups be M1,M2, . . . ,Mn/3, respectively. Let M be the

median of these medians. We then employ the quickselect algorithm with M as the pivot.

Let X1 = {q ∈ X : q < M} and X2 = {q ∈ X : q > M}. There are n/6 groups for which

the medians are ≤ M . In each such group there will be at least 2 elements that are ≤ M .

Therefore, at least n/3 elements of X will be ≤ M . This means that |X2| ≤ 2
3n and for

similar reasons |X2| ≤ 2
3n.

Thus, if T (n) is the run time of this algorithm on any input of size n and for any i, we have:

T (n) ≤ T
(
n
3

)
+ T

(
2
3n
)

+ Θ(n). By induction we see that T (n) = O(n log n).

6. Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}. Construct two polynomials f(x) =

Πn
i=1(x − ai) and g(x) = Πn

i=1(x − bi). The problem of checking if A and B are identi-

cal can be reduced to the problem of checking if f(x) and g(x) are identical. We can use

fingerprinting to do this in O(n) time as follows. Let S be the set of integers in the range

[1, nα+1]. Pick a random integer r from S, evaluate f(r) and g(r), and check if f(r) = g(r). If

f(r) = g(r), then output: “A and B are identical”; else output: “A and B are not identical”.

Clearly, if f(r) 6= g(r), then A and B are not identical. If A and B are identical, then the

above algorithm will never give an incorrect answer. If A and B are not identical, what is

the probability that f(r) = g(r)? Note that the polynomial h(x) = f(x)− g(x) has at most

n distinct zeros. Therefore, Prob.[f(r) = g(r)] ≤ n
nα+1 = n−α.


