
CSE 5500 Algorithms. Fall 2018
Solutions to Model Exam 2.

1. Evaluate the given polynomial at each integer in the range [1, cn]. If the polynomial evaluates to zero at any
v, then v is a root. We can evaluate the polynomial at cn points in O(n log2 n) time as has been mentioned in
class.

2. We first get an upper bound on d (within a factor 2) using the doubling trick. Followed by this, we use binary
search to get the value of d. Once we know d, we interpolate the first d pairs in X to get and output the right
polynomial.

k := 1;
repeat

1. Interpolate the first k pairs of X to get a polynomial f(x);
2. Check if f(ri) = ai for each i, 1 ≤ i ≤ n;
3. If yes, then quit else k := 2k;

forever

The k we get from the above code is an upper bound on d such that k ≤ 2d. Now we perform a binary search
in the range

[
k
2 , k

]
to get the actual value of d in a similar manner. Once we know the value of d we do an

interpolation on the first d pairs of X to get the correct polynomial f(x).

Note that one execution of step 2 above can be done in O(n log2 k) = O(n log2 d) time. In the entire algorithm
we perform step 2 a total of O(log d) times. Thus the total time for step 2 is O(n log3 d). We also perform step
1 a total of O(log d) times and each execution of step 1 takes O(k log3 k) = O(d log3 d) time. Thus the total
time for step 1 is O(d log4 d). Step 3 takes a total of O(log d) time.

Thus, the run time of the entire algorithm is O(n log3 d + d log4 d). If n is much larger than d, then this run
time is O(n log3 d).

3. Recall that Prim’s algorithm starts with a tree that only has the minimum edge (u, v). It then computes the
near value for each node (other than u and v). This takes O(|V |) time. After this, each node w ∈ V −{u, v} is
inserted into a priority queue. If we use a Fibonacci heap, this will take O(|V | log |V |) time. Followed by this
we have a for loop that is done |V | − 2 times. In each run of the for loop, we identify the minimum element
from the Fibonacci heap. This will cost a total of O(|V | log |V |) time in the entire for loop. If w is the node
with the minimum key, for each neighbor x of w, we check if x changes its near value and if so we change its
key. In the worst case we have to change keys O(|E|) times. If we use a Fibonacci heap, this will cost a total
of O(|E|) time. As a result, the total run time of the algorithm will be O(|V | log |V |+ |E|).

4. Use BFT to find the connected components of the given graph. Fill the transitive closure matrix A∗ as follows:
A∗(i, j) = 1 iff either i = j or i 6= j and i and j are in the same connected component.
Total complexity = complexity of BFT + complexity of filling the A∗ matrix = O(|V | + |E|) +
O(|V |2) = O(|V |2).

5. Define a function shuffle as below:
shuffle(i, j) = 1 if z1, . . . , zi+j is a shuffle of x1, . . . , xi and y1, . . . , yj .
shuffle(i, j) can be calculated from shuffle(i− 1, j) and shuffle(i, j − 1) as below:
shuffle(i, j) = 1 if shuffle(i− 1, j) = 1 and zi+j = xi OR

shuffle(i, j − 1) = 1 and zi+j = yj .
shuffle(m,n) tells whether z is a shuffle of x and y.
We have to compute shuffle(i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n and hence the total time taken is O(mn).

6. Using the Ford-Fulkerson algorithm we realize that the max flow is 11.

