CSE 5500 Algorithms. Fall 2018

Solutions to Model Exam 2.

1. Evaluate the given polynomial at each integer in the range $[1, c n]$. If the polynomial evaluates to zero at any v, then v is a root. We can evaluate the polynomial at $c n$ points in $O\left(n \log ^{2} n\right)$ time as has been mentioned in class.
2. We first get an upper bound on d (within a factor 2) using the doubling trick. Followed by this, we use binary search to get the value of d. Once we know d, we interpolate the first d pairs in X to get and output the right polynomial.

$k:=1 ;$

repeat

1. Interpolate the first k pairs of X to get a polynomial $f(x)$;
2. Check if $f\left(r_{i}\right)=a_{i}$ for each $i, 1 \leq i \leq n$;
3. If yes, then quit else $k:=2 k$;

forever

The k we get from the above code is an upper bound on d such that $k \leq 2 d$. Now we perform a binary search in the range $\left[\frac{k}{2}, k\right]$ to get the actual value of d in a similar manner. Once we know the value of d we do an interpolation on the first d pairs of X to get the correct polynomial $f(x)$.

Note that one execution of step 2 above can be done in $O\left(n \log ^{2} k\right)=O\left(n \log ^{2} d\right)$ time. In the entire algorithm we perform step 2 a total of $O(\log d)$ times. Thus the total time for step 2 is $O\left(n \log ^{3} d\right)$. We also perform step 1 a total of $O(\log d)$ times and each execution of step 1 takes $O\left(k \log ^{3} k\right)=O\left(d \log ^{3} d\right)$ time. Thus the total time for step 1 is $O\left(d \log ^{4} d\right)$. Step 3 takes a total of $O(\log d)$ time.
Thus, the run time of the entire algorithm is $O\left(n \log ^{3} d+d \log ^{4} d\right)$. If n is much larger than d, then this run time is $O\left(n \log ^{3} d\right)$.
3. Recall that Prim's algorithm starts with a tree that only has the minimum edge (u, v). It then computes the near value for each node (other than u and v). This takes $O(|V|)$ time. After this, each node $w \in V-\{u, v\}$ is inserted into a priority queue. If we use a Fibonacci heap, this will take $O(|V| \log |V|)$ time. Followed by this we have a for loop that is done $|V|-2$ times. In each run of the for loop, we identify the minimum element from the Fibonacci heap. This will cost a total of $O(|V| \log |V|)$ time in the entire for loop. If w is the node with the minimum key, for each neighbor x of w, we check if x changes its near value and if so we change its key. In the worst case we have to change keys $O(|E|)$ times. If we use a Fibonacci heap, this will cost a total of $O(|E|)$ time. As a result, the total run time of the algorithm will be $O(|V| \log |V|+|E|)$.
4. Use BFT to find the connected components of the given graph. Fill the transitive closure matrix A^{*} as follows: $A^{*}(i, j)=1$ iff either $i=j$ or $i \neq j$ and i and j are in the same connected component.
Total complexity $=$ complexity of BFT + complexity of filling the A^{*} matrix $=O(|V|+|E|)+$ $O\left(|V|^{2}\right)=O\left(|V|^{2}\right)$.
5. Define a function shuffle as below:
$\operatorname{shuffle}(i, j)=1$ if z_{1}, \ldots, z_{i+j} is a shuffle of x_{1}, \ldots, x_{i} and y_{1}, \ldots, y_{j}.
$\operatorname{shuffle}(i, j)$ can be calculated from $\operatorname{shuffle}(i-1, j)$ and $\operatorname{shuffle}(i, j-1)$ as below:
$\operatorname{shuffle}(i, j)=1$ if $\operatorname{shuffle}(i-1, j)=1$ and $z_{i+j}=x_{i}$ OR
$\operatorname{shuffle}(i, j-1)=1$ and $z_{i+j}=y_{j}$.
shuffle (m, n) tells whether z is a shuffle of x and y.
We have to compute shuffle (i, j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ and hence the total time taken is $O(m n)$.
6. Using the Ford-Fulkerson algorithm we realize that the max flow is 11 .

