
CSE 5500 Algorithms

Fall 2018 Exam III (model)– Solutions

1. Let M be the adjacency matrix and let |V | = n. Each of the n2 processors is assigned

one entry of M . These n2 processors then compute the Boolean AND of the n2 bits of

M in O(1) time.

2. Perform a prefix sums computation on r1, r2, . . . , rn to get r′1, r
′
2, . . . , r

′
n. This takes

O(log n) time using n
logn

CREW PRAM processors. Now we compute the outputs

as follows: si = r′i+k−1 − r′i−1, for i = 1, 2, . . . , (n − k + 1) and si = ri for i =

(n−k+2), (n−k+3), . . . , rn. This updating can be done in O(1) time using n CREW

PRAM processors. Using the slow-down lemma, this updating can also be done in

O(log n) time using n
logn

CREW PRAM processors.

As a result, the entire algorithm takes O(log n) time using n
logn

CREW PRAM proces-

sors.

3. Without loss of generality assume that n = 2k for some integer k. Consider a full

binary tree of height k (where the root is at level 0 and there are 2k leaves). At the

root we have the input sequence X = k1, k2, . . . , kn that we are interested in sorting.

We find the median M of X in O(log n) time the total work done being O(n). We

partition X into X1 and X2 based on M . Specifically, X1 = {q ∈ X|q < M} and

X2 = {q ∈ X|q > M}. We have to output X1 in sorted order, followed by M , followed

by X2 in sorted order. Partitioning of X can be done in O(log n) time and O(n) work

using prefix computations. X1 and X2 form the two children of the root.

We find the median M1 of X1 and partition X1 based on M1. These two parts form

the children of X1. Likewise, we find the median M2 of X2 and partition X2 based on

M2. These two parts form the children of X2, and so on.

At level i of the tree we have 2i nodes and each of these nodes has a sequence with no

more than n
2i

elements (for 0 ≤ i ≤ k). We have to find the median of each of these

sequences and partition each sequence into two based on its median. The total time

spent on each node is O
(
log

(
n
2i

))
, the total work done being O

(
n
2i

)
. Thus the total

work done at level i is O(n) the time spent being O
(
log

(
n
2i

))
. Using the slow-down

lemma, all the computations at level i can be completed in O(log n) time using n
logn

processors (for 0 ≤ i ≤ k).

As a result, the total run time of the entire algorithm is O(log2 n), the total work done

being O(n log n).

4. Let (p1, w1), (p2, w2), . . . , (pn, wn);m,P be the given instance of the zero-one knapsack

problem. Let the objects be O1, O2, . . . , On. Run ZeroOneK on this instance. If the

answer is “yes” then use the following algorithm to find a subset whose total weight is

≤ m and whose total profit is ≥ P :

S = {O1, O2, . . . , On};
for i = 1 to n do

S ′ = S − {Oi}; Invoke ZeroOneK on S ′,m, P ;

if the answer is “yes” then S = S ′;

Output S;

In the above algorithm we invoke ZeroOneK n times. If p(n) is the run time of Ze-

roOneK, then the run time of the above algorithm is O(np(n)) which will be a poly-

nomial in n if p(n) is a polynomial in n.

5. We are interested in checking if F has a satisfying assignment in which q variables have

the value F and the other (n − q) variables have the value T. Here 0 ≤ q ≤ c. The

number of assignments in which q variables have the value F and the other (n − q)

variables have the value T is
(
n
q

)
. For each such assignment we can check if F is

satisfiable in O(|F |) time. Therefore, we can check if F has a satisfying assignment in

which at most c variables have the value F is O(
∑c

q=0

(
n
q

)
|F |) = O(nc|F |) time, which

is a polynomial in n and the input length. Thus the given problem is in P .

