CSE 5500 Algorithms

Fall 2018 Exam III (model)- Solutions

1. Let M be the adjacency matrix and let $|V|=n$. Each of the n^{2} processors is assigned one entry of M. These n^{2} processors then compute the Boolean AND of the n^{2} bits of M in $O(1)$ time.
2. Perform a prefix sums computation on $r_{1}, r_{2}, \ldots, r_{n}$ to get $r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}$. This takes $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors. Now we compute the outputs as follows: $s_{i}=r_{i+k-1}^{\prime}-r_{i-1}^{\prime}$, for $i=1,2, \ldots,(n-k+1)$ and $s_{i}=r_{i}$ for $i=$ $(n-k+2),(n-k+3), \ldots, r_{n}$. This updating can be done in $O(1)$ time using n CREW PRAM processors. Using the slow-down lemma, this updating can also be done in $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors.
As a result, the entire algorithm takes $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors.
3. Without loss of generality assume that $n=2^{k}$ for some integer k. Consider a full binary tree of height k (where the root is at level 0 and there are 2^{k} leaves). At the root we have the input sequence $X=k_{1}, k_{2}, \ldots, k_{n}$ that we are interested in sorting. We find the median M of X in $O(\log n)$ time the total work done being $O(n)$. We partition X into X_{1} and X_{2} based on M. Specifically, $X_{1}=\{q \in X \mid q<M\}$ and $X_{2}=\{q \in X \mid q>M\}$. We have to output X_{1} in sorted order, followed by M, followed by X_{2} in sorted order. Partitioning of X can be done in $O(\log n)$ time and $O(n)$ work using prefix computations. X_{1} and X_{2} form the two children of the root.

We find the median M_{1} of X_{1} and partition X_{1} based on M_{1}. These two parts form the children of X_{1}. Likewise, we find the median M_{2} of X_{2} and partition X_{2} based on M_{2}. These two parts form the children of X_{2}, and so on.
At level i of the tree we have 2^{i} nodes and each of these nodes has a sequence with no more than $\frac{n}{2^{i}}$ elements (for $0 \leq i \leq k$). We have to find the median of each of these sequences and partition each sequence into two based on its median. The total time spent on each node is $O\left(\log \left(\frac{n}{2^{i}}\right)\right)$, the total work done being $O\left(\frac{n}{2^{i}}\right)$. Thus the total work done at level i is $O(n)$ the time spent being $O\left(\log \left(\frac{n}{2^{i}}\right)\right)$. Using the slow-down lemma, all the computations at level i can be completed in $O(\log n)$ time using $\frac{n}{\log n}$ processors (for $0 \leq i \leq k$).
As a result, the total run time of the entire algorithm is $O\left(\log ^{2} n\right)$, the total work done being $O(n \log n)$.
4. Let $\left(p_{1}, w_{1}\right),\left(p_{2}, w_{2}\right), \ldots,\left(p_{n}, w_{n}\right) ; m, P$ be the given instance of the zero-one knapsack problem. Let the objects be $O_{1}, O_{2}, \ldots, O_{n}$. Run ZeroOneK on this instance. If the answer is "yes" then use the following algorithm to find a subset whose total weight is $\leq m$ and whose total profit is $\geq P$:
$S=\left\{O_{1}, O_{2}, \ldots, O_{n}\right\} ;$
for $i=1$ to n do
$S^{\prime}=S-\left\{O_{i}\right\} ;$ Invoke ZeroOneK on $S^{\prime}, m, P ;$
if the answer is "yes" then $S=S^{\prime}$;
Output S;
In the above algorithm we invoke ZeroOneK n times. If $p(n)$ is the run time of $\mathrm{Ze}-$ roOneK, then the run time of the above algorithm is $O(n p(n))$ which will be a polynomial in n if $p(n)$ is a polynomial in n.
5. We are interested in checking if F has a satisfying assignment in which q variables have the value F and the other $(n-q)$ variables have the value T . Here $0 \leq q \leq c$. The number of assignments in which q variables have the value F and the other $(n-q)$ variables have the value T is $\binom{n}{q}$. For each such assignment we can check if F is satisfiable in $O(|F|)$ time. Therefore, we can check if F has a satisfying assignment in which at most c variables have the value F is $O\left(\sum_{q=0}^{c}\binom{n}{q}|F|\right)=O\left(n^{c}|F|\right)$ time, which is a polynomial in n and the input length. Thus the given problem is in \mathcal{P}.

