CSE 5500 Algorithms

Fall 2018 Exam III (model)– Solutions

- 1. Let M be the adjacency matrix and let |V| = n. Each of the n^2 processors is assigned one entry of M. These n^2 processors then compute the Boolean AND of the n^2 bits of M in O(1) time.
- 2. Perform a prefix sums computation on r_1, r_2, \ldots, r_n to get r'_1, r'_2, \ldots, r'_n . This takes $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors. Now we compute the outputs as follows: $s_i = r'_{i+k-1} r'_{i-1}$, for $i = 1, 2, \ldots, (n k + 1)$ and $s_i = r_i$ for $i = (n k + 2), (n k + 3), \ldots, r_n$. This updating can be done in O(1) time using n CREW PRAM processors. Using the slow-down lemma, this updating can also be done in $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors.

As a result, the entire algorithm takes $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors.

3. Without loss of generality assume that $n = 2^k$ for some integer k. Consider a full binary tree of height k (where the root is at level 0 and there are 2^k leaves). At the root we have the input sequence $X = k_1, k_2, \ldots, k_n$ that we are interested in sorting. We find the median M of X in $O(\log n)$ time the total work done being O(n). We partition X into X_1 and X_2 based on M. Specifically, $X_1 = \{q \in X | q < M\}$ and $X_2 = \{q \in X | q > M\}$. We have to output X_1 in sorted order, followed by M, followed by X_2 in sorted order. Partitioning of X can be done in $O(\log n)$ time and O(n) work using prefix computations. X_1 and X_2 form the two children of the root.

We find the median M_1 of X_1 and partition X_1 based on M_1 . These two parts form the children of X_1 . Likewise, we find the median M_2 of X_2 and partition X_2 based on M_2 . These two parts form the children of X_2 , and so on.

At level *i* of the tree we have 2^i nodes and each of these nodes has a sequence with no more than $\frac{n}{2^i}$ elements (for $0 \le i \le k$). We have to find the median of each of these sequences and partition each sequence into two based on its median. The total time spent on each node is $O\left(\log\left(\frac{n}{2^i}\right)\right)$, the total work done being $O\left(\frac{n}{2^i}\right)$. Thus the total work done at level *i* is O(n) the time spent being $O\left(\log\left(\frac{n}{2^i}\right)\right)$. Using the slow-down lemma, all the computations at level *i* can be completed in $O(\log n)$ time using $\frac{n}{\log n}$ processors (for $0 \le i \le k$).

As a result, the total run time of the entire algorithm is $O(\log^2 n)$, the total work done being $O(n \log n)$.

4. Let $(p_1, w_1), (p_2, w_2), \ldots, (p_n, w_n); m, P$ be the given instance of the zero-one knapsack problem. Let the objects be O_1, O_2, \ldots, O_n . Run ZeroOneK on this instance. If the answer is "yes" then use the following algorithm to find a subset whose total weight is $\leq m$ and whose total profit is $\geq P$:

$$S = \{O_1, O_2, \dots, O_n\};$$

for $i = 1$ to n do
$$S' = S - \{O_i\};$$
 Invoke ZeroOneK on $S', m, P;$

if the answer is "yes" then S = S'; Output S;

In the above algorithm we invoke ZeroOneK n times. If p(n) is the run time of ZeroOneK, then the run time of the above algorithm is O(np(n)) which will be a polynomial in n if p(n) is a polynomial in n.

5. We are interested in checking if F has a satisfying assignment in which q variables have the value F and the other (n - q) variables have the value T. Here $0 \le q \le c$. The number of assignments in which q variables have the value F and the other (n - q)variables have the value T is $\binom{n}{q}$. For each such assignment we can check if F is satisfiable in O(|F|) time. Therefore, we can check if F has a satisfying assignment in which at most c variables have the value F is $O(\sum_{q=0}^{c} \binom{n}{q} |F|) = O(n^{c}|F|)$ time, which is a polynomial in n and the input length. Thus the given problem is in \mathcal{P} .