\qquad

CSE 5500 Algorithms; Fall 2018

Exam I; Model

Note: You are supposed to give proofs to the time bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (18 points) Input is an array $A[1: n]$ where there are \sqrt{n} copies of one element and all the other elements are distinct. Present a Las Vegas algorithm to identify the repeated element in $\widetilde{O}\left(\sqrt{n} \log ^{2} n\right)$ time.
2. (17 points) Input is a sequence $X=k_{1}, k_{2}, \ldots, k_{n}$ of arbitrary real numbers. The problem is to find an element q of X such that $\operatorname{rank}(q, X) \in\left[\frac{1}{4} n, \frac{1}{2} n\right]$. Present a Monte Carlo algorithm to find such an element in $O(\log n)$ time. Prove that the output of your algorithm will be correct with high probability.
3. (16 points) \mathcal{A} and \mathcal{B} are two divide-and-conquer recursive algorithms to solve the same problem π. \mathcal{A} partitions π into 36 subproblems of size $\frac{n}{6}$ each and solves each one of them recursively. The time for partitioning and combining the partial solutions is $\Theta(n)$. \mathcal{B} partitions π into \sqrt{n} subproblems each of size \sqrt{n} and solves each one of them recursively. The time for partitioning and combining the partial solutions is n. Which of the two algorithms will you use to solve π ? Why?
4. (17 points) Input is a sequence $X=k_{1}, k_{2}, \ldots, k_{n}$ of keys. It is given that each input key is an integer in one of the following ranges: $\left[a, a+n^{10}\right],\left[b, b+n^{20}\right],\left[c, c+n^{30}\right]$, and $\left[d, d+n^{40}\right]$, where $a=1, b=n^{\log n}, c=2^{\sqrt{n}}$, and $d=2^{n}$. Present an $O(n)$ time and $O(n)$ space algorithm to sort X.
5. (17 points) Consider the BFPRT algorithm for selection. In this algorithm we partition the input into groups of size 5 each, find the median of each group, recursively find the median M of these group medians, and use M as the pivot in the quickselect algorithm. We showed in class that this algorithm runs in $O(n)$ time. What happens to the run time of this algorithm if we partition the input into groups of size 3 each (instead of 5)?
6. (17 points) Input are two integer multisets A and B. Recall that a multiset could have many copies of the same element. The problem is to check if A and B are identical, i.e., each integer occurs the same number of times in both sets. Present an $O(n)$ time Monte Carlo algorithm for this problem. Here $n=|A|=|B|$. Hint: Use fingerprinting.
