Name:

CSE 5500 Algorithms

Exam II-B; November 27, 2018

Note: You are supposed to give proofs to the time bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (17 points) Present an $O(n \log n)$ time algorithm to compute $f(x)=\Pi_{i=1}^{\log n}\left(x+a_{i}\right)^{2^{i}}$, where $a_{1}, a_{2}, \ldots, a_{\log n}$ are scalars. The coefficients of $f(x)$ should be output.
2. (17 points) X and Y are two binary strings with n and m bits, respectively (with $n>m$). The problem is to find all the occurrences of Y in X. Present an $O(n \log n)$ time algorithm for this problem. (You cannot state or use any known results on string matching for this problem.)
3. (16 points) Present an algorithm for finding a minimum cost spanning tree (MCST) of a given connected undirected weighted graph $G(V, E)$. The weight on each edge is w. Your algorithm should run in time $O(|E|)$. What is the total weight of the MCST?
4. (17 points) Input is a directed graph $G(V, E)$ where each edge has the same weight. The problem is to solve the all source shortest paths problem. Show how this can be done in $O\left(|V|^{2}+|V||E|\right)$ time.
5. (17 points) Let $A_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set of distinct coin types (for example, $a_{1}=50 \phi, a_{2}=25 \phi, a_{3}=10 \phi$, and so on.) We can assume each a_{i} is an integer and $a_{1}>a_{2}>\cdots>a_{n}$. Each type is available in unlimited quantity. The coin-changing problem is to take an integer C as input and make up an exact amount C using a minimum total number of coins. Assume that $a_{n}=1$ so that there is always a solution. Present an $O(C n)$ time algorithm for this problem. Hint: Use dynamic programming.
6. (16 points) Let $G(V, E)$ a flow network with $V=\{s, a, b, c, d, t\}$, where s is the source and t is the sink. Edge capacities are: $c(s, a)=10, c(s, c)=10, c(a, b)=8, c(a, c)=6, c(b, a)=$ $5, c(b, d)=9, c(b, t)=8, c(c, a)=3, c(c, d)=4, c(d, b)=5, c(d, c)=6$, and $c(d, t)=7$. Find the maxflow for G.
