
CSE 5500 Algorithms. Fall 2018

Home work 1 – Solutions

1. Proceeding along the lines of the problem done in class -

Probability of success in one attempt is = (
√
n
n ) ∗ (

√
n−1
n ) ≈ ( 1

n)

Probability of failure in one attempt is ≈ (1− 1
n)

Hence, the probability of failure in k successive attempts is ≈ (1− 1
n)
k

We want this probability to be no more than n−α. I.e., we want (1− 1
n)
k ≤ n−α

Using the inequality (1− 1
x)
x ≤ 1

e , (1− 1
n)
k ≤ e−k/n. Equating e−k/n and n−α we get: k =

αn logn
log e . Thus the number of attempts needed is no more than αn logn

log e with high probability.

In other words, the tun time is Õ(n log n). If we only make O(log n) attempts, the probability

of success can be verified to be not as high as what we want.

2. Algorithm A is called dα loge n (d being a constant) times in the new algorithm. A count of

the number of YESs and the number of NOs output by A is kept. Let u be the total number

of YESs and v the total number of NOs. If u > v, the new algorithm (call it B) outputs YES;

otherwise it will output NO.

B’s output will be correct if there are more correct answers than incorrect answers in the

dα loge n answers obtained from A. Let X be the number of times A outputs the correct

answer and let Y be the number of times A outputs the incorrect answer. We want to show

that Prob.[X > Y ] is ≥ (1− n−α).

Note that X is a binomial random variable with parameters (dα loge n, c). Similarly, Y is a

random variable with parameters (dα loge n, (1− c)). Since c is greater than 1
2 , let c = 1

2 + δ

for some some constant δ > 0. The expected value of X is dα loge n
(
1
2 + δ

)
and the expected

value of Y is dα loge n
(
1
2 − δ

)
.

Chernoff’s bounds are typically used to show that if the mean of a binomial random variable is

µ, then, with high probability, the actual value of the random variable can not be signinficantly

greater (or less) than µ. This is what we are going to use to prove our result.

Using Chernoff’s inequality,

Prob.

[
X ≤

(
1− δ

2

)
cdα loge n

]
≤ e−

δ2

8
cdα loge n

The RHS of the above inequality will be ≤ n−α if d ≥ 8
cδ2

.

Thus we have

Prob.

[
X ≤

(
1

2
+

3

4
δ − δ2

2

)
dα loge n

]
≤ n−α (1)

if d ≥ 8
cδ2

.

From equation 1 we see that X will be more than Y with high probability if we pick d ≥ 8
cδ2

.

3. We can make use of any data structure that supports the following operations: 1) SEARCH

for an arbitrary element; 2) INSERT an arbitrary element; and 3) DELETE the minimum.

One such data structure is a 2-3 tree. We can use a modified version of any such data

structure. Each node in this data structure will be a linked list of identical keys. Sorting, as

pointed out in class, amounts to inserting the given keys into the empty data structure and

deleting the minimum one by one. When inserting a key, we first check if this key is present in

the data structure. If it is, the new key will be inserted as the head of the correcponding list.



If it is not, a new node will be created (using the INSERT algorithm of the data structure)

and a list with one key will be stored in the node.

Note that the data structure will contain at most d nodes at any time. Time for inserting

a single element into the data structure is log d + c, where c is a constant time needed to

insert an element into linked list. Time for inserting all the elements into the data structure

is O(n log d). Total time for all the deletes is O(n + d log d). Therefore, the run time of the

algorithm is O(n log d+ n+ d log d) = O(n log d).

4. Find the median M of the n given keys in O(n) time. If X is the given input sequence

partition X into X1 and X2 such that X1 = {q ∈ X : q < M} and X2 = {q ∈ X : q > M}.
If |X1| and |X2| are both even, then M is the unique element. In this case output M and

quit. If not, if |X1| is odd, recursively look for the unique element in X1. If none of the

above cases applies, recursively look for the unique element in X2. Let T (n) be the run time

of this algorithm on any input of size n. Then, it takes O(n) time for the initial selection

and the partitioning. The time for the recursive call is T (n/2). Therefore, it follows that

T (n) = T (n/2) +O(n) which solves to: T (n) = O(n).

5. We can see that the smallest element appears 2n − 1 times in

C (min{k1, k1},min{k1, k2}, . . . ,min{k1, kn},min{k2, k1},min{k3, k1}, . . . ,min{kn, k1}).
Similarly, the second smallest element apperas 2n−3 times in C and the ith smallest element

appears 2n− 2i+ 1 times in C. Now the median of C is the jth smallest element such that∑j
i=1 2n− 2i+ 1 = n2

2

j can be obtained by solving the above equation, i.e., j2 − 2nj + n2

2 = 0.

Now, the median of C can be obtained by finding the jth smallest element in S.

Complexity = O(n).

6. Do a radix sort on the elements in A and B separately. Complexity = O(n).

Merge the two sets to check whether the sets are disjoint. Complexity = O(n).

Total complexity = O(n).

7. We assign a polynomial to each node in each of the two trees, by the following rules:

• Every leaf gets polynomial P = x0

• An internal vertex v at height h having children v1, v2, . . . , vk gets polynomial Pv =

(xh − Pv1)(xh − Pv2) . . . (xh − Pvk)

We claim that the two trees are isomorphic if and only if the polynomials at their roots

are equal. The left to right implication is immediate: if the trees are isomorphic then the

polynomials will be identical by virtue of multiplication being commutative.

If the polynomials are equal, then we can prove by induction that the trees are isomorphic.

The base case is trivial: if two trees have polynomial x0 then they are single node trees and are

isomorphic. If the polynomial at the root of both trees is Pv = (xh −Pv1)(xh −Pv2) . . . (xh −
Pvk), since xh does not appear in any of Pvi , i = 1, k it must be the case that both trees have k

children which can be paired based on their polynomials. By induction, since the polynomials

of the children are equal, the children’s subtrees are isomorphic and thus the two trees are

isomorphic.

So the problem of checking tree isomorphism has been reduced to checking equality of (at

most) degree n multivariate polynomials. This can be done in Õ(n) as presented in class.



8. Let G(V,E) be the input graph. A trivial algorithm is Algorithm 1. The worst case runtime

is O(mTc) where Tc is the time needed to check if a graph has a perfect matching, which is

the same as the time needed to multiply two matrices. Here m = |E|.

Algorithm 1 Algorithm P3

1. pick edge e = (u, v) ∈ E
remove edge e and nodes u and v from the graph

if there exists a perfect matching for the new graph then

recursively compute perfect matching M on the remaining graph

return M ∪ (u, v)

else

restore graph to initial state

remove edge (u, v) but not nodes u and v

go to 1

end if

9. For each submatrix of size m2, the probability of giving an incorrect answer is ≤ m2

t/ log t where

[1, t] is the range out of which we choose prime p. The probability of giving an incorrect answer

for any of the (n − m + 1)2 submatrices is ≤ (n−m+1)2m2

t/ log t . The max of (n − m + 1)2m2 is

obtained for m = n/2 and is O(n4). So, if we choose t = nα+4.1 then the previous probability

is less than n−α.

The runtime is O(n2) using the following observation. Let B[i, j] be the fingerprint of the sub-

matrix having the lower right corner at (i, j) and let C[i, j] be the fingerprint of m contiguous

values in row i, ending at position j . Then

B[i, j] = (B[i− 1, j]− 2m
2−mC[i−m+ 1, j])2m + C[i, j](mod p)

For row i, we only need values of B from row i− 1, so the extra memory for B is linear. The

values of C for row i and i −m + 1 at column j can be computed on the fly as we scan the

current row from left to right, so for C we only add constant memory overhead.

Thus, we can compute the fingerprint of the submatrix ending at (i, j) in constant time from

the fingerprint of the submatrix ending at position (i − 1, j). Since testing each fingerprint

takes O(1) time, the total runtime is O(n2) (including the cost of fingerprinting the initial

submatrices ending at positions in row m− 1).


