CSE 5500 Algorithms. Fall 2018

Home work 2. Due on November 14 (1:25 PM).

1. Present an $O(n)$ time algorithm to compute the coefficients of the polynomial $(1+x)^{n}$. How much time is needed if you use the FFT algorithm to solve this problem?
2. An $n \times n$ Toeplitz matrix is a matrix A with the property that $A[i, j]=A[i-1, j-1], 2 \leq$ $i, j \leq n$. Give an $O(n \log n)$ algorithm to multiply a Toeplitz matrix with an arbitrary $(n \times 1)$ column vector.
3. Let $f(x)$ be a polynomial of degree $n>0$. This polynomial has n derivatives, each one obtained by taking the derivative of the previous one. Devise an algorithm that computes all the derivatives of $f($.$) at a given point a$. Your algorithm should run in time $O\left(n \log ^{2} n\right)$.
4. Let $G(V, E)$ be any weighted connected graph. If C is any cycle of G, then show that the heaviest edge of C cannot belong to a minimum-cost spanning tree of G.
5. Given a sequence X of symbols, a subsequence of X is defined to be any contiguous portion of X. For example, if $X=x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{2}, x_{3}$ and x_{1}, x_{2}, x_{3} are subsequences of X. Given two sequences X and Y, present an algorithm that will identify the longest subsequence that is common to both X and Y. This problem is known as the longest common subsequence problem. What is the time complexity of your algorithm?
6. Let $M_{1} \times M_{2} \times \cdots \times M_{r}$ be a chain of matrix products. This chain may be evaluated in several different ways. Two possibilities are $\left.\left(\cdots\left(\left(M_{1} \times M_{2}\right) \times M_{3}\right) \times M_{4}\right) \times \cdots\right) \times M_{r}$ and $\left(M_{1} \times\left(M_{2} \times\left(\cdots \times\left(M_{r-1} \times M_{r}\right) \cdots\right)\right.\right.$. The cost of any computation of $M_{1} \times M_{2} \times \cdots \times M_{r}$ is the number of multiplications used. Let $M_{i j}$ denote the matrix product $M_{i} \times M_{i+1} \times \cdots \times M_{j}$. Let $D(i), 0 \leq i \leq r$, represent the dimensions of the matrices, i.e., M_{i} has $D(i-1)$ rows and $D(i)$ columns. Let $C(i, j)$ be the cost of computing $M_{i j}$ using an optimal product sequence for $M_{i j}$. Observe that $C(i, i)=0,1 \leq i \leq r$, and that $C(i, i+1)=D(i-1) D(i) D(i+1), 1 \leq i \leq r$.
(a) Obtain a recurrence relation for $C(i, j), j>i$.
(b) Write an algorithm to solve the recurrence relation of (a) for $C(1, r)$. Your algorithm should be of complexity $O\left(r^{3}\right)$.
7. Let f be a flow in a network and let α be a real number. The function $\alpha f: V \times V \rightarrow R$ is defined as $(\alpha f)(u, v)=\alpha f(u, v)$. Show that if f_{1} and f_{2} are flows in the network then so is $\alpha f_{1}+(1-\alpha) f_{2}$ for all α in the range $[0,1]$.
8. Show the execution of the Ford-Fulkerson technique in finding a max-flow in the network $G(V, E)$ where $V=\{s, 1,2,3,4, t\} . c(s, 1)=18 ; c(s, 3)=12 ; c(1,2)=8 ; c(2,1)=7 ; c(2,3)=$ $4 ; c(3,2)=11 ; c(3,1)=7 ; c(1,3)=6 ; c(3,4)=5 ; c(4,3)=6 ; c(2, t)=14 ; c(4, t)=16$.
