CSE 5500 Algorithms. Fall 2018

Homework 2 Solutions

1. The coefficients of the polynomial are given by $\binom{n}{i}, i=0,1, \ldots, n$.

Since $\binom{n}{i}=\binom{n}{i-1}(n-i+1) / i$, the coefficients can be computed in time $O(n)$.
FFT can be used to multiply two nth degree polynomials in $O(n \log n)$ time. We can compute the coefficients of $(1+x)^{n}$ by multiplying $(1+x)^{n / 2}$ and $(1+x)^{n / 2}$. If $T(n)$ is the time needed to compute $(1+x)^{n}$, then, $T(n)=T(n / 2)+O(n \log n)$, which solves to $O(n \log n)$.
2. Let A be a Toeplitz matrix and B be an $n \times 1$ vector. Let's consider the multiplication of the lower triangular part of A (including the main diagonal elements) with B.
Let the elements of A be the following:

$$
\begin{aligned}
& a_{n, n}=a_{n-1, n-1}=a_{n-2, n-2}=\ldots=a_{2,2}=a_{1,1}=a_{1} \\
& a_{n, n-1}=a_{n-1, n-2}=a_{n-2, n-3}=\ldots=a_{2,1}=a_{2} \\
& a_{n, n-2}=a_{n-1, n-3}=a_{n-2, n-4}=\ldots=a_{3,1}=a_{3} \\
& \quad \vdots \\
& a_{n, 1}=a_{n}
\end{aligned}
$$

Let the elements of B be the following:
$b_{1,1}=b_{1}, b_{2,1}=b_{2}, \ldots, b_{n, 1}=b_{n}$
Multiplication of the lower triangular part of A with B gives the following:

$$
\left[\begin{array}{c}
a_{1} b_{1} \\
a_{2} b_{1}+a_{1} b_{2} \\
a_{3} b_{1}+a_{2} b_{2}+a_{1} b_{3} \\
\vdots
\end{array}\right]
$$

We can notice that the above is nothing but the multiplication of two polynomials $\left(a_{1}+a_{2} x+\right.$ $\left.a_{3} x^{2}+\ldots\right)$ and $\left(b_{1}+b_{2} x+b_{3} x^{2}+\ldots\right)$.
Since the plolynomials can be multiplied in $O(n \log n)$ time, the matrices can also be multiplied in $O(n \log n)$ time. Multiplication of the upper triangular elements of A with B is symmetrical to the above and it would not affect the asymptotic complexity.
3. Using Taylor series expansion for $f($.$) ,$

$$
f(a+x)=f(a)+x f^{1}(a)+\frac{x^{2}}{2!} f^{2}(a)+\ldots+\frac{x^{n}}{n!} f^{n}(a)
$$

where $f^{i}(x)$ stands for the i th derivative of $f(x)$. Let $F(x)$ denote $f(a+x)$. Evaluate $F(x)$ at the nth roots of unity. This can be done in $O\left(n \log ^{2} n\right)$ time as was mentioned in class (see Section 9.5 in the text - An nth degree polynomial can be evaluated at n arbitrary points in $O\left(n \log ^{2} n\right)$ time $)$. Then, use inverse FFT to compute the coefficients of $F(x)$. This can be done in $O(n \log n)$ time. Once the coefficients of $F(x)$ are known, it is easy to determine the derivatives.
Run time $=O\left(n \log ^{2} n\right)+O(n \log n)+O(n)=O\left(n \log ^{2} n\right)$.
Another solution: Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Then, $f^{\prime}(x)=n a_{n} x^{n-1}+$
$(n-1) a_{n-1} x^{n-2}+\cdots+2 a_{2} x+a_{1} ; f^{\prime \prime}(x)=n(n-1) a_{n} x^{n-2}+(n-1)(n-2) a_{n-1} x^{n-3}+\cdots+2 a_{2} ;$ $f^{\prime \prime \prime}(x)=n(n-1)(n-2) a_{n} x^{n-3}+(n-1)(n-2)(n-3) a_{n-1} x^{n-4}+\cdots+6 a_{3}$; and so on. Now consider the following two polynomilas: $A(x)=\left(n!a_{n}\right) x^{n-1}+\left((n-1)!a_{n-1}\right) x^{n-2}+\cdots+$ (2!) $a_{2} x+a_{1}$ and $B(x)=\frac{a^{n-1}}{(n-1)!}+\frac{a^{n-2}}{(n-2)!} x+\cdots+\frac{a^{2}}{2!} x^{n-3}+a x^{n-2}+x^{n-1}$. Compute the product of $A(x)$ and $B(x)$ in $O(n \log n)$ time. We can obtain the required derivatives from the coefficients of this product. The total run time is $O(n \log n)$. However note that the coefficients of $A(x)$ could become very large creating practical difficulties.
4. Let C be a cycle with k vertices. Let the edge e of C with the maximum weight be a part of a minimum-cost spanning tree of G. There exists atleast one edge, e^{\prime}, of C which is not a part of the minimum-cost spanning tree (k vertices can be connected by $k-1$ edges and C contains k edges). By replacing e in the spanning tree with e^{\prime}, we can obtain a new spanning tree whose cost will be less than that of the original minimum-cost spanning tree. This is a contradiction and hence, the edge with the maximum weight of C can not be part of a minimum-cost spanning tree of G.
5. Let $X=x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ and $Y=y_{1}, y_{2}, y_{3}, \ldots, y_{m}$.

Let $L(i, j)$ represent the length of the longest common subsequence between $x_{1}, x_{2}, \ldots, x_{i}$ and $y_{1}, y_{2}, \ldots, y_{j}$ such that the common subsequence ends at x_{i} and y_{j} in X and Y respectively. Assuming that $L[i-1, j-1]$ has already been calculated, compute $L[i, j]$ as follows:
if $x[i]=y[j]$ then $L[i, j]=L[i-1, j-1]+1$

$$
\text { else } L[i, j]=0
$$

Compute $L[i, j]$ for $0 \leq i \leq n ; 0 \leq j \leq m$. Scan through all these values and pick the largest $L[i, j]$. Computing $L[i, j]$ from $L[i-1, j-1]$ takes constant time. Thus the total run time is $O(n m)$.
6. (a) $C(i, j)=\min _{i \leq k \leq j}\{C(i, k)+C(k+1, j)+D(i-1) D(k) D(j)\}$
(b) for $i=1$ to r do
for $j=i+1$ to r do for $k=i$ to j do

$$
C[i, j]=\min (C[i, j], C[i, k]+C[k+1, j]+D(i-1) D(k) D(j)
$$

7. We can verify all the properties that a flow function is required to satisfy. Let $F=\alpha f_{1}+$ $(1-\alpha) f_{2}$. Then, i) Capacity constraint: For all $u, v \in V$ we have: $F(u, v)=\alpha f_{1}(u, v)+$ $(1-\alpha) f_{2}(u, v) \leq \alpha c(u, v)+(1-\alpha) c(u, v) \leq c(u, v)$; ii) Skew symmetry: For all $u, v \in V$, $F(u, v)=\alpha f_{1}(u, v)+(1-\alpha) f_{2}(u, v)=-\alpha f_{1}(v, u)-(1-\alpha) f_{2}(v, u)=-F(v, u)$; iii) Flow conservation: For all $u \in V-\{s, t\}, \sum_{v \in V} F(u, v)=\sum_{v \in V} \alpha f_{1}(u, v)+(1-\alpha) f_{2}(u, v)$ $=\alpha \sum_{v \in V} f_{1}(u, v)+(1-\alpha) \sum_{v \in V} f_{2}(u, v)=0$.
8. Going through the steps of Ford-Fulkerson method we realize that the value of maximum flow is 19 .
