
CSE 5500 Algorithms. Fall 2018

Homework 2 Solutions

1. The coefficients of the polynomial are given by
(n
i

)
, i = 0, 1, . . . , n.

Since
(n
i

)
=
(n
i−1
)

(n− i+ 1)/i, the coefficients can be computed in time O(n).

FFT can be used to multiply two nth degree polynomials in O(n log n) time. We can compute

the coefficients of (1+x)n by multiplying (1 + x)n/2 and (1 + x)n/2. If T (n) is the time needed

to compute (1 + x)n, then, T (n) = T (n/2) +O(n log n), which solves to O(n log n).

2. Let A be a Toeplitz matrix and B be an n × 1 vector. Let’s consider the multiplication of

the lower triangular part of A (including the main diagonal elements) with B.

Let the elements of A be the following:

an,n = an−1,n−1 = an−2,n−2 = . . . = a2,2 = a1,1 = a1
an,n−1 = an−1,n−2 = an−2,n−3 = . . . = a2,1 = a2
an,n−2 = an−1,n−3 = an−2,n−4 = . . . = a3,1 = a3

...

an,1 = an
Let the elements of B be the following:

b1,1 = b1, b2,1 = b2, . . . , bn,1 = bn
Multiplication of the lower triangular part of A with B gives the following:

a1b1
a2b1 + a1b2

a3b1 + a2b2 + a1b3
...

We can notice that the above is nothing but the multiplication of two polynomials (a1+a2x+

a3x
2 + . . .) and (b1 + b2x+ b3x

2 + . . .).

Since the plolynomials can be multiplied inO(n log n) time, the matrices can also be multiplied

in O(n log n) time. Multiplication of the upper triangular elements of A with B is symmetrical

to the above and it would not affect the asymptotic complexity.

3. Using Taylor series expansion for f(.),

f(a+ x) = f(a) + xf1(a) + x2

2! f
2(a) + . . .+ xn

n! f
n(a)

where f i(x) stands for the ith derivative of f(x). Let F (x) denote f(a + x). Evaluate F (x)

at the nth roots of unity. This can be done in O(n log2 n) time as was mentioned in class (see

Section 9.5 in the text – An nth degree polynomial can be evaluated at n arbitrary points in

O(n log2 n) time). Then, use inverse FFT to compute the coefficients of F (x). This can be

done in O(n log n) time. Once the coefficients of F (x) are known, it is easy to determine the

derivatives.

Run time = O(n log2 n) +O(n log n) +O(n) = O(n log2 n).

Another solution: Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. Then, f ′(x) = nanx
n−1 +

(n−1)an−1x
n−2+ · · ·+2a2x+a1; f

′′(x) = n(n−1)anx
n−2+(n−1)(n−2)an−1x

n−3+ · · ·+2a2;

f ′′′(x) = n(n− 1)(n− 2)anx
n−3 + (n− 1)(n− 2)(n− 3)an−1x

n−4 + · · ·+ 6a3; and so on. Now

consider the following two polynomilas: A(x) = (n!an)xn−1 + ((n − 1)!an−1)x
n−2 + · · · +

(2!)a2x + a1 and B(x) = an−1

(n−1)! + an−2

(n−2)!x + · · · + a2

2! x
n−3 + axn−2 + xn−1. Compute the

product of A(x) and B(x) in O(n log n) time. We can obtain the required derivatives from

the coefficients of this product. The total run time is O(n log n). However note that the

coefficients of A(x) could become very large creating practical difficulties.

4. Let C be a cycle with k vertices. Let the edge e of C with the maximum weight be a part

of a minimum-cost spanning tree of G. There exists atleast one edge, e′, of C which is not a

part of the minimum-cost spanning tree (k vertices can be connected by k − 1 edges and C

contains k edges). By replacing e in the spanning tree with e′, we can obtain a new spanning

tree whose cost will be less than that of the original minimum-cost spanning tree. This is

a contradiction and hence, the edge with the maximum weight of C can not be part of a

minimum-cost spanning tree of G.

5. Let X = x1, x2, x3, . . . , xn and Y = y1, y2, y3, . . . , ym.

Let L(i, j) represent the length of the longest common subsequence between x1, x2, . . . , xi and

y1, y2, . . . , yj such that the common subsequence ends at xi and yj in X and Y respectively.

Assuming that L[i− 1, j − 1] has already been calculated, compute L[i, j] as follows:

if x[i] = y[j] then L[i, j] = L[i− 1, j − 1] + 1

else L[i, j] = 0.

Compute L[i, j] for 0 ≤ i ≤ n; 0 ≤ j ≤ m. Scan through all these values and pick the largest

L[i, j]. Computing L[i, j] from L[i− 1, j − 1] takes constant time. Thus the total run time is

O(nm).

6. (a) C(i, j) = mini≤k≤j{C(i, k) + C(k + 1, j) +D(i− 1)D(k)D(j)}
(b) for i = 1 to r do

for j = i+ 1 to r do

for k = i to j do

C[i, j] = min(C[i, j], C[i, k] + C[k + 1, j] +D(i− 1)D(k)D(j)

7. We can verify all the properties that a flow function is required to satisfy. Let F = αf1 +

(1 − α)f2. Then, i) Capacity constraint: For all u, v ∈ V we have: F (u, v) = αf1(u, v) +

(1 − α)f2(u, v) ≤ αc(u, v) + (1 − α)c(u, v) ≤ c(u, v); ii) Skew symmetry: For all u, v ∈ V ,

F (u, v) = αf1(u, v) + (1 − α)f2(u, v) = −αf1(v, u) − (1 − α)f2(v, u) = −F (v, u); iii) Flow

conservation: For all u ∈ V − {s, t},
∑

v∈V F (u, v) =
∑

v∈V αf1(u, v) + (1 − α)f2(u, v)

= α
∑

v∈V f1(u, v) + (1− α)
∑

v∈V f2(u, v) = 0.

8. Going through the steps of Ford-Fulkerson method we realize that the value of maximum flow

is 19.

