CSE5500 Algorithms

Homework 3, Due on December 5, 2018

1. Present a CRCW PRAM algorithm for finding the maximum of n given numbers in $O(1)$ time using $n^{1+\epsilon}$ processors, where ϵ is any constant >0.
2. Input is a sequence of n numbers (not necessarily in sorted order). The problem is to compute the right neighbor of each element in the sorted order. For example if the input is $6,12,5,3,17,11$, the output will be $11,17,6,5, \infty, 12$. Present a Las Vegas algorithm for this problem that runs in $\widetilde{O}(1)$ time. You can use up to n^{2} CRCW PRAM processors. (Hint: Assume that we can find the minimum of n elements in $\widetilde{O}(1)$ time using n CRCW PRAM processors).
3. The array A is an array of n keys, where each key is an integer in the range $[1, n]$. The problem is to decide whether there are any repeated elements in A. Show how you do this in $O(1)$ time on an n-processor CRCW PRAM. Which version of the CRCW PRAM are you using?
4. Let π_{2} be a problem for which there exists a deterministic algorithm that runs in time $2^{\sqrt{n}}$ (where n is the input size). Prove or disprove:

If π_{1} is another problem such that π_{1} is polynomially reducible to π_{2}, then π_{1} can be solved in deterministic $O\left(2^{\sqrt{n}}\right)$ time on any input of size n.
5. Assume that there is a polynomial time algorithm CLQ to solve the CLIQUE decision problem. Show how to use CLQ to determine the maximum clique size of a given graph in polynomial time.

