CSE 5500 Algorithms

Fall 2018; Homework 3 Solutions

1. It was shown in class that the maximum of n elements can be found in $O(1)$ time using n^{2} common CRCW PRAM processors.
Consider the case when $\epsilon=\frac{1}{2}$. Divide the elements into groups fo size \sqrt{n}. Assign the first \sqrt{n} elements to the first n processors and the second \sqrt{n} elements to the next n processors and so on. The maximum element in each group can be found in $O(1)$ time. At this stage, we have \sqrt{n} elements and $n \sqrt{n}$ processors. Hence, the maximum of these elements can be found in $O(1)$ time. Total time $=O(1)$.
Next, consider the case when $\epsilon=\frac{1}{3}$. Here, divide the elements into groups of size $n^{1 / 3}$. Assign the first $n^{1 / 3}$ elements to the first $n^{2 / 3}$ processors and the second $n^{1 / 3}$ elements to the next $n^{2 / 3}$ processors and so on. The maximum element of each group can be found in $O(1)$ time and using $n^{4 / 3}$ prceossors the maximum of these maximum elements can be found in $O(1)$ time.

For the general case, partition the input into groups with n^{ϵ} elements in each group. Find the maximum of each group assigning $n^{2 \epsilon}$ processors to each group. This takes $O(1)$ time. Now the problem reduces to finding the maximum of $n^{1-\epsilon}$ elements. Again, partition the elements with n^{ϵ} elements in each group and find the maximum of each group. There will be only $n^{1-2 \epsilon}$ elements left. Proceed in a similar fashion until the number of remaining elements is $\leq \sqrt{n}$. The maximum of these can be found in $O(1)$ time. Clearly, the run time of this algorithm is $O(1 / \epsilon)$. This will be a constant if ϵ is a constant.
2. Assign n^{2} processors to each of the input keys. Let G_{i} be the collection of processors associated with $k_{i} . G_{i}$ identifies all the keys in the input that are greater than k_{i} and then finds the minimum of all these keys in $O(1)$ time. This minimum is the right neighbor of k_{i}.
For the randomized algorithm use the fact that we can find the minimum of n keys in $\widetilde{O}(1)$ time using n common CRCW PRAM processors.
3. We can use an array $a[1: n]$ to solve this problem. At the beginning processor 1 sets ThereAreRepeatedElements $:=0$. Assume that we have n arbitrary CRCW PRAM processors. Let the input sequence be $k_{1}, k_{2}, \ldots, k_{n}$. We assign one key per processor. In one parallel write step, for $1 \leq i \leq n$, processor i tries to write i in $a\left[k_{i}\right]$. In the next step processor i reads from $a\left[k_{i}\right]$. If it does not find i there it tries to write a 1 in ThereAreRepeatedElements. At the end of this step, we have the result in ThereAreRepeatedElements.
4. We know that π_{1} polynomially reduces to π_{2}. Let x be an instance of π_{1} with $|x|=n$. We can convert this into an instance x^{\prime} of π_{2} in $O\left(n^{c}\right)$ time (for some constant c). Note that c could be any constant (10, for instance) and we can only say that $\left|x^{\prime}\right|=O\left(n^{c}\right)$ and in fact $\left|x^{\prime}\right|$
could be $\Omega\left(n^{c}\right)$. If $\left|x^{\prime}\right|$ is $\Omega\left(n^{c}\right)$, the run time needed for solving x^{\prime} will be $O\left(2^{\sqrt{\Omega\left(n^{c}\right)}}\right)$ which can be asymptotically greater than $2^{\sqrt{n}}$. Thus the given statement is not correct.
5. Use the following algorithm, Size $($ Graph $G)$ -

```
for }i:=|V|\mathrm{ to 0 do
    if CLQ (i)= yes then
            output i
            quit
end
```

Note that we increase the runtime of the CLQ algorithm, by a factor of $|V|$, yet maintaining it polynomial.

