
CSE 4502/5717 Big Data Analytics. Fall 2022

Exam I Solutions

1. Consider the following algorithm:

repeat

for i = 1 to
√
n do

Flip a
√
n-sided coin to get u;

Flip a
√
n-sided coin to get v;

if u ̸= v and Ai[u] = Ai[v] then output Ai[u] and quit;

forever

Analysis: Note that since
∑√

n
i=1 ni = n0.8, there should exist a k (1 ≤ k ≤

√
n) such that

nk ≥ n0.3. The for loop is executed for every array. Call one iteration of the for loop as a

basic step.

Focus now only on Ak. Probability of successfully identifying the repeated element in Ak

in one basic step = n0.3(n0.3−1)√
n×

√
n

≈ 1
n0.4 . Probability of failure in one basic step is ≈ 1 − 1

n0.4 .

Probability of failure in q successive steps ≈
(
1− 1

n0.4

)q
. We want this to be ≤ n−α. This

happens when q ≥ αn0.4 loge n.

Since each basic step takes O(
√
n) time, the run time of the entire algorithm is Õ(n0.9 log n).

2. Let X = k1, k2, . . . , kn be the input. We can find the median M of X in Θ(n) time using the

BFPRT algorithm. Followed by this, we partition X into X1 and X2 where X1 = {q ∈ X :

q < M} and X2 = {q ∈ X : q > M}. This partitioning takes Θ(n) time. Subsequently, we

recursively sort X1 and X2. Finally, we output sorted(X1), M , sorted(X2).

Note that |X1| = |X2| = n/2 (since M is the median of X). Let T (n) be the run time of the

above algorithm on any input of size n. Then, the recurrence relation for T (n) will be:

T (n) = 2T (n/2) + Θ(n).

Using the Master theorem, we can solve the above recurrence relation to get: T (n) =

Θ(n log n).

3. We use an array M [1 : n2/3]. Consider the following algorithm:

1) for i = 1 to n2/3 in paralel do

Processor i writes −∞ in M [i];

2) for i = 1 to n in paralel do

Processor i writes ki in M [ki];

3) All the n processors collectively find and output the maximum of

M [1],M [2], . . . ,M [n2/3].

Analysis: Steps 1 and 2 take one unit of time each. In step 3 we are finding the maximum

of n2/3 elements using n common CRCW PRAM processors and hence this can be done in

O(1) time. (Note that we proved in class that we can find the maximum of N elements in

O(1) time using N1.5 common CRCW PRAM processors). Thus, the total run time of this

algorithm is O(1) using n common CRCW PRAM processors.

4. Perform a prefix sums computation on k1, k2, . . . , kn to get s1, s2, . . . , sn. This can be done

in O(log n) time using n
logn CREW PRAM processors.

For the next step, assume that we have n processors. Let s0 = 0.

for i = m to n do

Processor i computes Ai−m+1 as si − si−m.

The above step takes O(1) time using n CREW PRAM processors. Using the slow-down

lemma, this step can be completed in O(log n) time using n
logn CREW PRAM processors.

Now, perform a prefix minima computation on A1, A2, . . . , An−m+1 to get

B1, B2, . . . , Bn−m+1. Output Bn−m+1. This step can be done in O(log n) time using
n

logn CREW PRAM processors.

Thus the entire algorithm takes O(log n) time using n
logn CREW PRAM processors.

5. We can use the k-way merge algorithm that we have discussed in class, with k = M/B. We

utilize a complete k-ary tree with q leaves. We start from the leaves and move up the tree.

At each internal node, we merge the k runs coming from the children. When the root merges

the runs from the children, we get the final output.

Merging at each internal node can be done in exactly the same manner that we discussed

in class. As a result, at each level of the tree we do O(n/B) I/O operations and there are
log q

log(M/B) levels. Put together, the total I/O complexity of the algorithm is O
(

n
B

log q
log(M/B)

)
.

6. Perform selection on X three times to find elements of X whose ranks in X are n
4 ,

n
2 , and

3n
4 .

Let these elements be q1, q2, and q3, respectively. These selections can be done in a total of

O
(
n
B

)
I/O operations using the out-of-core version of the BFPRT algorithm.

Now perform one more pass through the data to generate X1 = {q ∈ X : q ≤ q1}, X2 =

{q ∈ X : q1 < q ≤ q2}, X3 = {q ∈ X : q2 < q ≤ q3}, and X4 = {q ∈ X : q > q3}. This

can be done by keeping four output buffers in the core memory (one each for X1, X2, X3, and

X4, respectively). Bring one block from X; Distribute the elements of this block into the

four output buffers based on the values of these elements. If any of the output buffers is full,

output this buffer into the corresponding sequence in the disk. Repeat this process until all

the elements of X have been acted on. Clearly, this takes only one pass.

Overall, the I/O complexity of this algorithm is O
(
n
B

)
.

