CSE 4502/5717 Big Data Analytics Homework 1, due on September 19, 2024 at 11AM

- 1. Input is a sorted array a[1:n] of arbitrary real numbers. The array could only be of one of the following two types: 1) **Type I:** All the elements in the array are distinct; or 2) **Type II:** The array has \sqrt{n} copies of one element, the other elements being distinct. Present a Monte Carlo algorithm that determines the type of the array in $O(\sqrt{n} \log n)$ time. Show that the output of your algorithm will be correct with high probability.(**Fact:** $(1-x)^{1/x} \le 1/e$ for any 1 > x > 0.)
- 2. \mathcal{A} is a Monte Carlo algorithm for solving a problem Π that has a run time of $T_1(n)$ on any input of size n. The output of this algorithm will be correct with a probability of c, where c is a constant > 0. \mathcal{B} is an algorithm that can check if the output from \mathcal{A} is correct or not in $T_2(n)$ time. Show how to use \mathcal{A} and \mathcal{B} to create a Las Vegas algorithm to solve Π whose run time is $\widetilde{O}((T_1(n) + T_2(n)) \log n)$.
- 3. Show that the maximum of n given elements can be found in O(1) time using $n^{1+\epsilon}$ common CRCW PRAM processors, where ϵ is any constant > 0.
- 4. Present an $O(\sqrt{n})$ time algorithm for the selection problem. You can use up to \sqrt{n} CREW PRAM processors.
- 5. Prove the following Lemma (known as the slow-down Lemma): If \mathcal{A} is a parallel algorithm that uses P PRAM processors and runs in T time, then \mathcal{A} can run on a P'-processor machine to get a run time of T' such that $T' = O\left(\frac{PT}{P'}\right)$, for any $P' \leq P$.
- 6. What happens to the I/O complexity of the sorting algorithm we discussed in class if we choose k to be $\frac{cM}{B}$ for some integer c > 1?