CSE 4502/5717 Big Data Analytics. Fall 2024
Exam I Solutions

1. Consider the following algorithm:

repeat
Pick a random element x from A;
Perform a binary search in B to check if z € B;
If x € B, output z and quit;

forever
Analysis: Probability that a randomly picked element x of A is in B is %/7 This means
that the probability of not being in B is =1 — # As a result, probability that none of

k
the first randomly picked k elements of A is in B is = (1 S) < exp (—#) RHS will

pyid
be < n~if k > an®/7 log, n. For every element picked from A, we perform a binary search in
B that will cost O(logn) time. Put together, the run time of the algorithm is O(n%/7log?n).

2. Here is an algorithm:

Pick a random sample S from A. Let k = |S|.

if A has at least one 0 then output “Type 17;

else if A has at least one 2, then output “Type 27;
else output “Type 17.

Analysis: Clearly, the run time of the algorithm is O(k).

If the sample S has a 0 or a 2, the output of the algorithm will certainly be correct. The
output could be incorrect only when the sample S has all ones. As a result, consider the
possibility of S having all ones only.

Case 1: The array is of Type 1: In this case, the output will be correct.

Case 2: The array is of Type 2: Probability that a random element of A is 1 is % Probability

that all the k elements in S are ones is (%)k This probability will be < n~% if k > O‘lézgsn.

In summary, the run time of the algorithm is O(logn).

3. A and B are the two input matrices. Let C = AB. Cj; = Y ;_; A * Byj. For every

n

Iogn Processors for its computation. Here is

element in the output matrix C, we assign ¢ =

a pseudocode for the algorithm:

for 1 <i4,j < n in parallel do

1. Let the processors assigned to C;; be Pé, Pfj, ce PZ%-;

2. These ¢ processors create create an array @;;[1 : n] such that
Qij[k] = Aik * Byj, for 1 <k <m;

3. These g processors perform a prefix sums computation on Q;;[1], @Q4;(2], .. ., Qi;[n],
and hence calculate Q;;[1] + Qi;[2] + ... + Q45[n] = Cy; (as one of the results).

Analysis. In line 2, the array Q;;[1 : n] can be created in O(1) time using n processors. This

n
logn

computation in line 3 can be completed in O(log n) time using

can also be done in O(logn) time using processors (via the slow down lemma). Prefix

gn processors (as was proven

lo
n3
logn

in class). As a result, the entire algorithm takes O(logn) time. The processor bound is

n

Togn PrOCESSOrs for every output element.

since we assign

. Let the input sequence be X = by, by, ..., b,. Form the array Y[l : n] such that Y[i] = oo if
b =0and Y[i] =i if b; = 1, for 1 <+i < n. This array can be formed in O(logn) time given
—=— CREW PRAM processors.

logn

Now perform a prefix minima computation on Y[1],Y[2],...,Y[n]. This can also be done in

O(logn) time using 1o§n CREW PRAM processors. Let the output of this prefix computation

be Z[1],Z[2],..., Z[n]. Output Z|n|.

Clearly, the algorithm takes O(logn) time using 10’;” CREW PRAM processors.

. The idea is to employ the standard merging algorithm to merge X and Y and in the process
identify elements that are common to X and Y.

We start by bringing one block each from X and Y into the core memory. We start merging
these blocks. While merging, if two copies of any element are found (one coming from X and
the other coming from Y'), output this element to an output buffer O (residing in the core
memory).

When we run out of elements from X or Y, we bring the next block from that run into the
core memory. The size of O is B. When the output buffer O is full, we write this block in
the disk and clear O.

We continue the above merging process until we have processed all the elements from X or
Y. When this happens, the algorithm stops and the disk has X NY.

Clearly, we perform at most one pass through X and Y. Thus the I/O complexity of the
entire algorithm is O (%)

. With one pass through X, form another sequence Y = (¢ — k1), (¢ — k2),...,(¢ — k) and
write Y into the disk. Let Z = X,Y. Note that Z is a sequence of length 2n. Sort the
sequence Z using the algorithm we discussed in class. Let the sorted sequence be Z’. This
will take O (% %) I/0O operations. Now do one pass through Z’ and check if Z’ has any
repeated elements. If so, output “Yes” else output “No”. Note that if there are two elements
k' and k” in X whose sum is ¢, then there will be an element ¢ — k' = k” in Y and there will

be two copies of k” in Z.

