
CSE 4502/5717 Big Data Analytics. Fall 2024

Exam I Solutions

1. Consider the following algorithm:

repeat

Pick a random element x from A;

Perform a binary search in B to check if x ∈ B;

If x ∈ B, output x and quit;

forever

Analysis: Probability that a randomly picked element x of A is in B is n2/7

n . This means

that the probability of x not being in B is = 1 − 1
n5/7 . As a result, probability that none of

the first randomly picked k elements of A is in B is =
(
1− 1

n5/7

)k
≤ exp

(
− k

n5/7

)
. RHS will

be ≤ n−α if k ≥ αn5/7 loge n. For every element picked from A, we perform a binary search in

B that will cost O(log n) time. Put together, the run time of the algorithm is Õ(n5/7 log2 n).

2. Here is an algorithm:

Pick a random sample S from A. Let k = |S|.
if A has at least one 0 then output “Type 1”;

else if A has at least one 2, then output “Type 2”;

else output “Type 1”.

Analysis: Clearly, the run time of the algorithm is O(k).

If the sample S has a 0 or a 2, the output of the algorithm will certainly be correct. The

output could be incorrect only when the sample S has all ones. As a result, consider the

possibility of S having all ones only.

Case 1: The array is of Type 1: In this case, the output will be correct.

Case 2: The array is of Type 2: Probability that a random element of A is 1 is 1
3 . Probability

that all the k elements in S are ones is
(
1
3

)k
. This probability will be ≤ n−α if k ≥ α logn

log 3 .

In summary, the run time of the algorithm is O(log n).

3. A and B are the two input matrices. Let C = AB. Cij =
∑n

k=1Aik ∗ Bkj . For every

element in the output matrix C, we assign q = n
logn processors for its computation. Here is

a pseudocode for the algorithm:

for 1 ≤ i, j ≤ n in parallel do

1. Let the processors assigned to Cij be P 1
ij , P

2
ij , . . . , P

q
ij ;

2. These q processors create create an array Qij [1 : n] such that

Qij [k] = Aik ∗Bkj , for 1 ≤ k ≤ n;

3. These q processors perform a prefix sums computation on Qij [1], Qij [2], . . . , Qij [n],

and hence calculate Qij [1] +Qij [2] + . . .+Qij [n] = Cij (as one of the results).

Analysis. In line 2, the array Qij [1 : n] can be created in O(1) time using n processors. This

can also be done in O(log n) time using n
logn processors (via the slow down lemma). Prefix

computation in line 3 can be completed in O(log n) time using n
logn processors (as was proven

in class). As a result, the entire algorithm takes O(log n) time. The processor bound is n3

logn

since we assign n
logn processors for every output element.

4. Let the input sequence be X = b1, b2, . . . , bn. Form the array Y [1 : n] such that Y [i] = ∞ if

bi = 0 and Y [i] = i if bi = 1, for 1 ≤ i ≤ n. This array can be formed in O(log n) time given
n

logn CREW PRAM processors.

Now perform a prefix minima computation on Y [1], Y [2], . . . , Y [n]. This can also be done in

O(log n) time using n
logn CREW PRAM processors. Let the output of this prefix computation

be Z[1], Z[2], . . . , Z[n]. Output Z[n].

Clearly, the algorithm takes O(log n) time using n
logn CREW PRAM processors.

5. The idea is to employ the standard merging algorithm to merge X and Y and in the process

identify elements that are common to X and Y .

We start by bringing one block each from X and Y into the core memory. We start merging

these blocks. While merging, if two copies of any element are found (one coming from X and

the other coming from Y), output this element to an output buffer O (residing in the core

memory).

When we run out of elements from X or Y , we bring the next block from that run into the

core memory. The size of O is B. When the output buffer O is full, we write this block in

the disk and clear O.

We continue the above merging process until we have processed all the elements from X or

Y . When this happens, the algorithm stops and the disk has X ∩ Y .

Clearly, we perform at most one pass through X and Y . Thus the I/O complexity of the

entire algorithm is O
(
n
B

)
.

6. With one pass through X, form another sequence Y = (q − k1), (q − k2), . . . , (q − kn) and

write Y into the disk. Let Z = X,Y . Note that Z is a sequence of length 2n. Sort the

sequence Z using the algorithm we discussed in class. Let the sorted sequence be Z ′. This

will take O
(

n
B

log(n/M)
log(M/B)

)
I/O operations. Now do one pass through Z ′ and check if Z ′ has any

repeated elements. If so, output “Yes” else output “No”. Note that if there are two elements

k′ and k” in X whose sum is q, then there will be an element q− k′ = k” in Y and there will

be two copies of k” in Z.

