
CSE 4502/5717 Big Data Analytics

Fall 2024; Homework 2 Solutions

1. Dijkstra’s algorithm can be described as follows:

Algorithm 1: Dijkstra(V,E, s)

Data: (V,E): a graph;

s: a source node;

let w(u, v) be the weight of edge (u, v);

Result: array d where du is the length of the shortest path from s to u;

begin

for u in V do

du := ∞;

ds := 0;

Create a priority queue Q to store pairs of the form (node, distance);

Insert the pair (s, 0) into Q;

while Q not empty do

(u, r) := ExtractMin(Q);

for every child c of u do

if dc > du + w(u, c) then

dc := du + w(u, c);

Insert(Q, (c, dc)); // update distance if c present

We assume that we can store the priority queue in memory (O(|V |)). The algorithm

will read the neighbors of each node at most once. Therefore, the total number of I/Os

is
∑

u∈E
⌈
degu
B

⌉
= O

(
|E|
B

+ |V |
)
.

2. We apply the LMM algorithm with l = m =
√
M . We assume known that we can

merge
√
M sequences of length M each in 3 passes through the data. The pseudocode

of the algorithm is given below:

1

Algorithm 2: Sort(X,N)

Data:

X: array of elements;

N = M2: number of elements in X;

Result: sorted array X;

begin

// First Pass;

Split the input into M runs of length M each;

Sort each run and unshuffle it into m =
√
M sequences of length

√
M each;

// Second Pass;

Merge groups of l =
√
M unshuffled sequences (in memory);

// Third Pass;

Shuffle groups of m =
√
M merged sequences of length M each;

At the same time clean up the dirty regions;

At this point we have
√
M sorted runs of length M

√
M each;

// Third Pass (can be done with the previous pass);

Unshuffle each run of length M
√
M into m =

√
M sequences of length M

each ;

// Fourth, Fifth and Sixth Pass;

Merge groups of l =
√
M unshuffled sequences of length M each;

// Seventh Pass;

Shuffle groups of m =
√
M merged sequences of length M

√
M each;

Clean up dirty regions;

For an arbitrary N , the general principle is to first merge
√
M sequences of length M

each, then merge
√
M sequences of length M

√
M each and so on. Let K stand for√

M and let T (u, v) be the number of passes required to merge u sorted sequences of

length v each. Then we have the familiar formulas:

T (K,M) = 3

T (K,KiM) = 2 + T (K,Ki−1M) = 2i+ 3

T (Kc,M) = T (K,M) + T (K,KM) + T (K,K2M) + . . .+ T (K,Kc−1)

=
c−1∑
i=0

(2i+ 3) = c2 + 2c

However, as we saw in the previous pseudocode, when we compute T (Kc,M) we can

2

overlap the unshuffling at the beginning of a T (K,KiM) computation with the shuf-

fling done at the end of the previous T (K,Ki−1M) computation. Therefore, the last

equation becomes:

T (Kc,M) = T (K,M) + . . .+ T (K,Kc−1)− (c− 1) = c2 + c+ 1

Therefore the number of passes for M2 and M3 elements are:

T (M2) = T (M,M) = T (K2,M) = 22 + 2 + 1 = 7

T (M3) = T (M2,M) = T (K4,M) = 42 + 4 + 1 = 21 □

In general, for a given N , if Kc = N/M it means that c = 2 logN/M
logM

and the number of

passes to sort N elements is:

T (N) = T (Kc,M) = 4

(
logN/M

logM

)2

+ 2
logN/M

logM
+ 1.

3. The input striping is good for accessing the rows of the matrix in a disk parallel manner.

However, if we want to access the columns, this striping is not good. To multiply A

and C we need the transpose of C. To get this, we first restripe the matrix C as

follows. Let Ri be the ith row of C. We read Ri into core memory in n
DB

parallel I/Os.

We then rewrite row Ri starting from disk i mod D (with one block per disk). This is

done for every 1 ≤ i ≤ n. After this restriping, we read one column at a time into the

core memory and write it back to the disks one block per disk (starting from the first

disk). Note that a column can be read in n
D

parallel I/O operations. Thus the matrix

C can be transposed in n2

D
< n3

DB
parallel I/O operations.

We then use the following algorithm. Let E = AC.

for i := 1 to n do

Read row i of A into core memory. Let this row be called Ai.

for j := 1 to n do

Read column j of C into core memory. Let this column be Cj.

Eij =
∑n

k=1 Ai[k] ∗ Cj[k].

Write row i of E into the disks, striping the data in a row-major order.

3

Each row or column of A or C can be read in O
(

n
DB

)
parallel I/Os. Also, each row of

E can be written in O
(

n
DB

)
I/Os. Thus the total number of parallel I/Os is O

(
n3

DB

)
.

4. Let the input strings be S1, S2, . . . , Sk with
∑k

i=1 |Si| = M . Build a generalized suffix

tree for these strings in O(M) time. Let the suffixes be labelled with (i, j) where i

refers to Si and j refers to the jth suffix in Si. Perform a depth first traversal in this

tree.

When we reach a leaf labelled (i, 1) for some i, this leaf corresponds to the entire string

Si. This leaf might have more than one labels. Let these labels (in addition to (i, 1)) be

(i1, l1), (i2, l2), . . . , (iq, lq). Clearly, all the strings Si1 , Si2 , . . . , Siq have Si as a substring.

Output all of these strings as those that contain Si. Check if the edge to this leaf’s

parent is labeled with $. If not, proceed with the traversal. If yes, let x be the parent

of this leaf. Also, let c1, c2, . . . , cr be the other children of x. Traverse through all the

subtrees rooted at these children. All the leaves in these subtrees also correspond to

strings that have Si as a substring. Output these strings as well (as those that contain

Si) and proceed with the traversal.

The entire algorithm can be implemented to run in time O(M + k2).

5. Let S1, S2, . . . , Sk be the given input strings. Let |Si| = ni, for 1 ≤ i ≤ k. For any

two strings Si and Sj we can compute the longest common substring between them in

O(ni + nj) time, for 1 ≤ i, j ≤ k. Use this algorithm to compute the longest common

substring between every pair of strings. The total run time is O(
∑k

i=1

∑k
j=1(ni+nj)) =

O(kM).

6. Note that on a common CRCW PRAM we can compute the minimum or maximum

of n integers (in the range [1, nO(1)]) in O(1) time using n processors.

Let T be the text and P be the pattern with |T | = m and |P | = n. We can use binary

search on the suffix array. In any iteration of binary search, we have to compare the

pattern P with a suffix Ti of the text. This comparison involves the identification of

the smallest integer q such that P [q] ̸= Ti[q]. This can be done in O(1) time using the

above algorithm. Thus the entire binary search takes O(logm) time.

4

