CSE 4502/5717 Big Data Analytics Fall 2024; Homework 2 Solutions

1. Dijkstra's algorithm can be described as follows:

Algorithm 1: Dijkstra (V, E, s) **Data:** (V, E) : a graph; s: a source node; let $w(u, v)$ be the weight of edge (u, v) ; **Result:** array d where d_u is the length of the shortest path from s to u; begin for u in V do $\bigsqcup d_u := \infty;$ $d_s := 0;$ Create a priority queue Q to store pairs of the form (node, distance); Insert the pair $(s, 0)$ into Q ; while Q not empty do $(u, r) :=$ ExtractMin $(Q);$ for every child c of u do if $d_c > d_u + w(u, c)$ then $d_c := d_u + w(u, c);$ Insert $(Q, (c, d_c))$; // update distance if c present

We assume that we can store the priority queue in memory $(O(|V|))$. The algorithm will read the neighbors of each node at most once. Therefore, the total number of I/Os is $\sum_{u \in E} \left\lceil \frac{deg_u}{B} \right\rceil$ $\left\lfloor \frac{eg_u}{B} \right\rfloor = O\left(\frac{|E|}{B} + |V|\right).$

2. We apply the LMM algorithm with $l = m =$ √ M. We assume known that we can merge \sqrt{M} sequences of length M each in 3 passes through the data. The pseudocode of the algorithm is given below:

Algorithm 2: $Sort(X, N)$

Data:

X: array of elements;

 $N = M^2$: number of elements in X;

Result: sorted array X ;

begin

// First Pass; Split the input into M runs of length M each; Sort each run and unshuffle it into $m =$ \sqrt{M} sequences of length \sqrt{M} each; // Second Pass; Merge groups of $l =$ √ M unshuffled sequences (in memory); // Third Pass; Shuffle groups of $m =$ √ M merged sequences of length M each; At the same time clean up the dirty regions; At this point we have \sqrt{M} sorted runs of length M √ M each; // Third Pass (can be done with the previous pass); Unshuffle each run of length M √ M into $m =$ √ M sequences of length M each ; // Fourth, Fifth and Sixth Pass; Merge groups of $l =$ √ M unshuffled sequences of length M each; // Seventh Pass; Shuffle groups of $m =$ √ M merged sequences of length M √ M each; Clean up dirty regions;

For an arbitrary N, the general principle is to first merge \sqrt{M} sequences of length M each, then merge \sqrt{M} sequences of length M √ M each and so on. Let K stand for √ M and let $T(u, v)$ be the number of passes required to merge u sorted sequences of length v each. Then we have the familiar formulas:

$$
T(K, M) = 3
$$

\n
$$
T(K, K^{i}M) = 2 + T(K, K^{i-1}M) = 2i + 3
$$

\n
$$
T(K^{c}, M) = T(K, M) + T(K, KM) + T(K, K^{2}M) + ... + T(K, K^{c-1})
$$

\n
$$
= \sum_{i=0}^{c-1} (2i + 3) = c^{2} + 2c
$$

However, as we saw in the previous pseudocode, when we compute $T(K^c, M)$ we can

overlap the unshuffling at the beginning of a $T(K, KⁱM)$ computation with the shuffling done at the end of the previous $T(K, K^{i-1}M)$ computation. Therefore, the last equation becomes:

$$
T(K^c, M) = T(K, M) + \ldots + T(K, K^{c-1}) - (c - 1) = c^2 + c + 1
$$

Therefore the number of passes for M^2 and M^3 elements are:

$$
T(M^{2}) = T(M, M) = T(K^{2}, M) = 2^{2} + 2 + 1 = 7
$$

$$
T(M^{3}) = T(M^{2}, M) = T(K^{4}, M) = 4^{2} + 4 + 1 = 21 \square
$$

In general, for a given N, if $K^c = N/M$ it means that $c = 2 \frac{\log N/M}{\log M}$ and the number of passes to sort N elements is:

$$
T(N) = T(K^{c}, M) = 4\left(\frac{\log N/M}{\log M}\right)^{2} + 2\frac{\log N/M}{\log M} + 1.
$$

3. The input striping is good for accessing the rows of the matrix in a disk parallel manner. However, if we want to access the columns, this striping is not good. To multiply A and C we need the transpose of C . To get this, we first restripe the matrix C as follows. Let R_i be the *i*th row of C. We read R_i into core memory in $\frac{n}{DB}$ parallel I/Os. We then rewrite row R_i starting from disk i mod D (with one block per disk). This is done for every $1 \leq i \leq n$. After this restriping, we read one column at a time into the core memory and write it back to the disks one block per disk (starting from the first disk). Note that a column can be read in $\frac{n}{D}$ parallel I/O operations. Thus the matrix C can be transposed in $\frac{n^2}{D} < \frac{n^3}{DB}$ parallel I/O operations.

We then use the following algorithm. Let $E = AC$.

for $i := 1$ to n do

Read row *i* of A into core memory. Let this row be called A_i .

for $j := 1$ to n do

Read column j of C into core memory. Let this column be C_j .

 $E_{ij} = \sum_{k=1}^{n} A_i[k] * C_j[k].$

Write row i of E into the disks, striping the data in a row-major order.

Each row or column of A or C can be read in $O\left(\frac{n}{DB}\right)$ parallel I/Os. Also, each row of E can be written in $O\left(\frac{n}{DB}\right)$ I/Os. Thus the total number of parallel I/Os is $O\left(\frac{n^3}{DB}\right)$.

4. Let the input strings be S_1, S_2, \ldots, S_k with $\sum_{i=1}^k |S_i| = M$. Build a generalized suffix tree for these strings in $O(M)$ time. Let the suffixes be labelled with (i, j) where i refers to S_i and j refers to the jth suffix in S_i . Perform a depth first traversal in this tree.

When we reach a leaf labelled $(i, 1)$ for some i, this leaf corresponds to the entire string S_i . This leaf might have more than one labels. Let these labels (in addition to $(i, 1)$) be $(i_1, l_1), (i_2, l_2), \ldots, (i_q, l_q)$. Clearly, all the strings $S_{i_1}, S_{i_2}, \ldots, S_{i_q}$ have S_i as a substring. Output all of these strings as those that contain S_i . Check if the edge to this leaf's parent is labeled with $\$. If not, proceed with the traversal. If yes, let x be the parent of this leaf. Also, let c_1, c_2, \ldots, c_r be the other children of x. Traverse through all the subtrees rooted at these children. All the leaves in these subtrees also correspond to strings that have S_i as a substring. Output these strings as well (as those that contain S_i) and proceed with the traversal.

The entire algorithm can be implemented to run in time $O(M + k^2)$.

- 5. Let S_1, S_2, \ldots, S_k be the given input strings. Let $|S_i| = n_i$, for $1 \le i \le k$. For any two strings S_i and S_j we can compute the longest common substring between them in $O(n_i + n_j)$ time, for $1 \leq i, j \leq k$. Use this algorithm to compute the longest common substring between every pair of strings. The total run time is $O(\sum_{i=1}^{k} \sum_{j=1}^{k} (n_i + n_j)) =$ $O(kM)$.
- 6. Note that on a common CRCW PRAM we can compute the minimum or maximum of *n* integers (in the range $[1, n^{O(1)}]$) in $O(1)$ time using *n* processors.

Let T be the text and P be the pattern with $|T| = m$ and $|P| = n$. We can use binary search on the suffix array. In any iteration of binary search, we have to compare the pattern P with a suffix T_i of the text. This comparison involves the identification of the smallest integer q such that $P[q] \neq T_i[q]$. This can be done in $O(1)$ time using the above algorithm. Thus the entire binary search takes $O(\log m)$ time.