CSE 4502/5717 Big Data Analytics
Fall 2024; Homework 2 Solutions

1. Dijkstra’s algorithm can be described as follows:

Algorithm 1: Dijkstra(V, E, s)

Data: (V, E): a graph;
s: a source node;
let w(u,v) be the weight of edge (u,v);
Result: array d where d, is the length of the shortest path from s to u;

begin
for v in V do
t d, = 00;
dg := 0;

Create a priority queue @ to store pairs of the form (node, distance);
Insert the pair (s,0) into Q;
while @) not empty do
(u,r) := ExtractMin(Q);
for every child ¢ of u do
if d. > d, + w(u,c) then
L d. = dy +w(u,c);
Insert(Q, (¢, d.)); // update distance if ¢ present

We assume that we can store the priority queue in memory (O(|V])). The algorithm

will read the neighbors of each node at most once. Therefore, the total number of I/Os
s e [48] = 0 (18 + V1),

2. We apply the LMM algorithm with [= m = v M. We assume known that we can
merge v/ M sequences of length M each in 3 passes through the data. The pseudocode

of the algorithm is given below:

Algorithm 2: Sort(X, N)

Data:
X: array of elements;
N = M?: number of elements in X;
Result: sorted array X;
begin
// First Pass;
Split the input into M runs of length M each;
Sort each run and unshuffle it into m = /M sequences of length v/M each;
// Second Pass;
Merge groups of [= /M unshuffled sequences (in memory);
// Third Pass;
Shuffle groups of m = /M merged sequences of length M each;
At the same time clean up the dirty regions;
At this point we have /M sorted runs of length M+/M each;
// Third Pass (can be done with the previous pass);
Unshuffle each run of length M+/M into m = v/M sequences of length M
each ;
// Fourth, Fifth and Sixth Pass;
Merge groups of I = v/ M unshuffled sequences of length M each;
// Seventh Pass;
Shuffle groups of m = v/M merged sequences of length M+/M each;

Clean up dirty regions;

For an arbitrary IV, the general principle is to first merge v/ M sequences of length M
each, then merge v M sequences of length M~/ M each and so on. Let K stand for
VM and let T'(u,v) be the number of passes required to merge u sorted sequences of

length v each. Then we have the familiar formulas:

T(K,M)=3
T(K,K'M)=2+T(K,K"'M) =2i+3
T(KM)=T(K,M)+T(K,KM)+T(K,K*M)+ ...+ T(K,K")

=) (2i+3)=c"+2c

i

I
—

Il
o

However, as we saw in the previous pseudocode, when we compute T(K¢, M) we can

2

overlap the unshuffling at the beginning of a T'(K, K*M) computation with the shuf-
fling done at the end of the previous T'(K, K" M) computation. Therefore, the last

equation becomes:

T(KSM)=T(K,M)+ ... +T(K,KY) —(c—1)=c*+c+1

Therefore the number of passes for M? and M? elements are:

T(M?)
T(M?)

T(M,M)=T(K>M)=2>4+24+1=7
T(M>M)=T(K* M) =4*+4+1=210

In general, for a given N, if K¢ = N/M it means that ¢ = 21(’&?](4]\4 and the number of

passes to sort N elements is:

+ 1

T(N) = T(K¢, M) = 4 (logN/M)2 | glosN/M

log M log M

. The input striping is good for accessing the rows of the matrix in a disk parallel manner.
However, if we want to access the columns, this striping is not good. To multiply A
and C' we need the transpose of C. To get this, we first restripe the matrix C' as
follows. Let R; be the ith row of C'. We read R; into core memory in 5% parallel I /Os.
We then rewrite row R; starting from disk ¢ mod D (with one block per disk). This is
done for every 1 <1 < n. After this restriping, we read one column at a time into the
core memory and write it back to the disks one block per disk (starting from the first
disk). Note that a column can be read in % parallel I/O operations. Thus the matrix

C can be transposed in "g < g—; parallel I/O operations.

We then use the following algorithm. Let £ = AC.

for i :=1ton do
Read row i of A into core memory. Let this row be called A;.
for j :=1ton do
Read column j of C into core memory. Let this column be Cj.
Eij = > k1 Alk] = Cj[k].

Write row i of E into the disks, striping the data in a row-major order.

Each row or column of A or C' can be read in O (%) parallel I/Os. Also, each row of
E can be written in O (£5) I/Os. Thus the total number of parallel I/Os is O (g—SB).

. Let the input strings be Sy, Ss, ..., S, with Zle |S;| = M. Build a generalized suffix
tree for these strings in O(M) time. Let the suffixes be labelled with (i, 7) where @
refers to S; and j refers to the jth suffix in S;. Perform a depth first traversal in this

tree.

When we reach a leaf labelled (4, 1) for some ¢, this leaf corresponds to the entire string
S;. This leaf might have more than one labels. Let these labels (in addition to (i, 1)) be
(i1,01), (12, 12), ..., (ig, lg). Clearly, all the strings S;,, S;,, . . ., S;, have S; as a substring.
Output all of these strings as those that contain S;. Check if the edge to this leaf’s
parent is labeled with $. If not, proceed with the traversal. If yes, let x be the parent
of this leaf. Also, let ¢y, co,..., ¢, be the other children of z. Traverse through all the
subtrees rooted at these children. All the leaves in these subtrees also correspond to
strings that have S; as a substring. Output these strings as well (as those that contain

S;) and proceed with the traversal.

The entire algorithm can be implemented to run in time O(M + k?).

. Let S1,5,,...,Sk be the given input strings. Let |S;| = n;, for 1 < i < k. For any
two strings S; and S; we can compute the longest common substring between them in
O(n; + n;) time, for 1 <4, j < k. Use this algorithm to compute the longest common
substring between every pair of strings. The total run time is O(3.F_, Z§:1 (ni+n;)) =
O(kM).

. Note that on a common CRCW PRAM we can compute the minimum or maximum
of n integers (in the range [1,2°M]) in O(1) time using n processors.

Let T be the text and P be the pattern with |T'| = m and |P| = n. We can use binary
search on the suffix array. In any iteration of binary search, we have to compare the
pattern P with a suffix T} of the text. This comparison involves the identification of
the smallest integer ¢ such that P[q| # T;[g]. This can be done in O(1) time using the

above algorithm. Thus the entire binary search takes O(logm) time.

