
CSE 4502/5717 Big Data Analytics. Fall 2024

Exam II Solutions

1. Notice that an undirected graph on n vertices will be a tree if it has n − 1 edges and is

connected. The graph is given to us in adjacency lists form. We bring the adjacency lists to

the core memory one block at a time. If G is a tree, the total size of the adjacency lists will

be 2(n− 1). If the size exceeds this number, we know that G is not a tree and we output this

information and stop.

If the total size of the adjacency lists is 2(n− 1), then we can perform a DFS on the graph to

see if it is connected. Note that the entire graph can be stored in the core memory. Or, we

can run Prim’s algorithm on G (assuming that each edge has a weight of 1) to compute the

weight of the MST. If the weight of the MST is less than n− 1, it will mean that G is not a

tree. If it is n− 1, we output that G is a tree.

Clearly, the algorithm makes only O
(
n
B

)
I/O operations.

2. We first merge all the input sequences to get a sorted sequence S. The input sequences can be

merged two at a time. We can think of a binary tree T of height k where each leaf corresponds

to an input sequence. At each internal node u, we merge the two sequences coming from its

two children and send the merged sequence to the parent of u. The leaves will start by sending

their sequences to their parents. When the root merges the two sequences of its children, we

get S.

Let u be any internal node at level i (for some i in the range [1, k], the level of the leaves being

0). Let A and B be the two sorted sequences coming into u from its children. We can merge

A with B in one pass through A and B. We start by bringing BD elements from A and BD

elements from B into the core memory. We start merging them. We write the merged output

into an output buffer of size BD (residing in the core memory). When the buffer is full, we

write these BD elements across the disks in parallel and clear the buffer. When we run out

of elements from any of the runs, we bring the next BD elements from that run. Clearly, we

can merge A and B by bringing each element of these runs only once into the core memory.

In the same way we can perform all the mergings at level i. The number of passes needed

for level i is 1, for any 1 ≤ i ≤ k. Thus in k passes through the data we can merge all of the

input sequences.

Followed by the above, we perform one pass through S to output ∩n
i=1Ri as follows. We bring

BD elements from S into the core memory and scan through these elements to see if there

are k copies of any element. If so, this element will go into an output buffer (of size BD). We

bring the next BD elements and do the same, etc. When we bring the next BD elements, we

keep k − 1 elements from the previous BD elements for obvious reasons. When the output

buffer if full, the elements in the buffer will be written to the disks and the buffer will be

cleared.



In summary, the total number of passes taken by the above algorithm is k + 1.

3. Note that for this problem, B = M2/3 and D = M1/3. We’ll use the (ℓ,m) merge sort

algorithm with ℓ = m = M1/3. Here are the details:

(a) Form runs of length M each; There are M1/3 runs that we have to merge. Let these

runs be X1, X2, . . . , XM1/3 .

(b) Unshuffle each run into M1/3 parts. Let the parts of Xi be X1
i , X

2
i , . . . , X

M1/3

i , for

1 ≤ i ≤ M1/3.

(c) Recursively Merge Xj
1 , X

j
2 , ..., X

j

M1/3 to get Yj , for 1 ≤ j ≤ M1/3.

(d) Shuffle Y1, Y2, . . . , YM1/3 to get Z.

(e) Clean up the dirty sequence in Z.

Analysis: Note that we have used LMM with ℓ = m = M1/3. Steps (a) and (b) take 1 pass

together. Step (c) takes 1 pass.

Assume that we have a memory of size 2M . In this case we can clean up the dirty sequence

while we are shuffling. Let Z be partitioned into blocks of size M each: Z = Z1, Z2, . . .,

where each block Zi is of size ℓm = M2/3. Note that the dirty sequence can only span two

successive blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z1

and Z2; Z2 and Z3; etc. If we have 2M memory, we can do this cleaning as well as Step (d)

in a total of one pass.

As a result, Steps (d) and (e) take 1 pass.

In summary, the total number of passes = 3.

4. We first compute the longest common substring S between α and β. This can be done in

O(m) time as was shown in class. S is either a prefix or a suffix of β. Consider the case that

S is a suffix of β. We now check if S is a prefix of α and the remaining suffix of α is a prefix

of β. This also takes O(m) time. The case that S is a prefix of β can be handled similarly.

5. We extract all the k-mers from S. There are m − k + 1 such k-mers. This can be done in

O(m) time. Followed by this we sort all the k-mers using the integer sorting algorithm. Since

each k-mer is of size O(logm) bits, we can sort them in O(m) time. We scan through the

sorted sequence to output all the distinct k-mers and their counts.

6. Note that on a common CRCW PRAM we can compute the minimum or maximum of n

integers in the range [1, nO(1)] in O(1) time using n processors.

We partition the interval [1,m] into
√
m equal sized intervals: [1,

√
m], [

√
m + 1, 2

√
m], . . ..

We then assign n processors per interval to identify which interval P belongs to. This can be

done using the above minimum finding algorithm in O(1) time. Let I be this interval. There

are
√
m suffixes in this interval. We assign n processors for each suffix to see if P matches a

prefix of the suffix. This also takes O(1) time. Thus the total run time is O(1).


