
CSE 4502/5717 Big Data Analytics; Fall 2024

Exam 1 Helpsheet

1. Randomized Algorithms. A Monte Carlo algorithm runs for a prespecified amount of time and its
output is correct with high probability. By high probability we mean a probability of ≥ 1− n−α, for
any constant α (n being the input size). A Las Vegas algorithm always outputs the correct answer
and its run time is a random variable. We say the run time of a Las Vegas algorithm is Õ(f(n)) if
the run time is ≤ cαf(n) for all n ≥ n0 with probability ≥ (1− n−α) for some constants c and n0.

For the repeated element identification problem we devised a Las Vegas algorithm with a run time
of Õ(log n). Given a sequence of n elements, we presented a Monte Carlo algorithm to find an
element ≥ the median that runs in time O(log n). We also showed that sorting can be done in
n log n+ Õ(n log logn) comparisons (using the idea of Frazer and McKellar).

2. Master theorem. Consider the recurrence relation: T (n) = aT (n/b) + f(n), where a ≥ 1 and
b > 1 are constants. Case1: If f(n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a).
Case2: If nlogb a = Θ(f(n)), then T (n) = Θ(f(n) log n). Case3: If f(n) = Ω(nlogb a+ϵ)for some
constant ϵ > 0 and af(n/b) ≤ cf(n) for some constant c < 1, then, T (n) = Θ(f(n)).

3. Parallel Algorithms. The model we used was the PRAM (Parallel Random Access Machine).
Processors communicate by writing into and reading from memory cells that are accessible to all.
Depending on how read and write conflicts are resolved, there are variants of the PRAM. In an
Exclusive Read Exclusive Write (EREW) PRAM, no concurrent reads or concurrent writes are per-
mitted. In a Concurrent Read Exclusive Write (CREW) PRAM, concurrent reads are permitted
but concurrent writes are prohibited. In a Concurrent Read Concurrent Write (CRCW) PRAM both
concurrent reads and concurrent writes are allowed. Concurrent writes can be resolved in many ways.
In a Common CRCW PRAM, concurrent writes are allowed only if the conflicting processors have
the same message to write (into the same cell at the same time). In an Arbitrary CRCW PRAM,
an arbitrary processor gets to write in cases of conflicts. In a Priority CRCW PRAM, write conflicts
are resolved on the basis of priorities (assigned to the processors at the beginning).

We presented a Common CRCW PRAM algorithm for finding the Boolean AND of n given bits in
O(1) time. We used n processors. As a corollary we gave an algorithm for finding the minimum
(or maximum) of n given arbitrary real numbers in O(1) time using n2 Common CRCW PRAM
processors.

We also discussed an optimal CREW PRAM algorithm for the prefix computation problem. This
algorithm uses n

logn processors and runs in O(log n) time on any input of n elements. (For the prefix
computation problem the input is a sequence of elements from some domain Σ: k1, k2, . . . , kn and the
output is another sequence: k1, k1⊕ k2, . . . , k1⊕ k2⊕ k3⊕ · · · ⊕ kn, where ⊕ is any binary associative
and unit-time computable operation on Σ.) As an application of prefix computation, we proved that

sorting of n elements can be done in O(log n) time using n2

logn CREW PRAM processors.

The slow-down Lemma: If A is a parallel algorithm that uses P PRAM processors and runs in T
time, then A can be run on a P ′-processor machine to get a run time of T ′ such that T ′ = O

(
PT
P ′

)
,

for any P ′ ≤ P .

4. Out-of-core Computing. In an out-of-core computing model we typically measure only the number
of I/O operations (i.e., the I/O complexity) performed by any algorithm. Computing time normally
is much less than the I/O time. We let M and B denote the size of the core memory and the block
size, respectively. We showed the following results for a single disk model: 1) We can sort N elements

with O
(
N
B

log(N/M)
log(M/B)

)
I/O operations. We first formed runs of length M each and then merged these

N/M runs using a M/B-way merge algorithm; 2) There exists a deterministic algorithm for selection
whose I/O complexity is O(N/B). BFPRT algorithm was used to achieve this result.

CSE 4502/5717 Big Data Analytics

Fall 2024 Exam 2 Helpsheet

1. We analyzed the I/O complexity of Prim’s algorithm for finding the minimum spanning

tree of a weighted graph G(V,E). Assuming that M = Θ(|V |), we showed that the

I/O complexity of Prim’s algorithm was O
(

|E|
B

+ |V |
)
.

2. In a Parallel Disks Model (PDM) there are D disks. In one parallel I/O we can

bring a block (of size B) of elements from each of the disks. We typically assume

that M is a constant multiple of DB. We briefly described the DSM and SRM al-

gorithms for sorting on the PDM. We then introduced the (ℓ,m)-merge sort (LMM)

algorithm and showed that it can be used to sort N given elements in no more than[
log(N

M
)

log(min{
√
M,M

B
}) + 1

]2
number of passes through the data.

3. Suffix tree is a powerful data structure that can be used to perform a variety of op-

erations on strings and much more. We showed the following results: 1) Given a text

T and a pattern P we can search for P in T in O(m + n) time where m = |T | and
n = |P |; 2) Given a text T and a set P = {P1, P2, . . . , Pq} of patterns, we can find

all the occurrences of all the patterns in T in O(m + N + K) time where m = |T |,
N is the total size of all the patterns and K is the total number of occurrences of

all the patterns in T ; 3) Given a database DB of texts {T1, T2, . . . , Tk} and a set of

patterns P = {P1, P2, . . . , Pq}, we can find occurrences of all the patterns in DB in

O(M +N +K) time where M is the total size of all the texts in DB, N is the total size

of all the patterns, and K is the total number of occurrences of all the patterns in DB;

4) Given two strings S1 and S2, we can find the longest common substring between

them in O(|S1| + |S2|) time; 5) Given two strings S1 and S2 and an integer l, we can

find all the substrings of S2 of length ≥ l that occur in S1 in O(|S1| + |S2|) time; 6)

Given a string S1, a collection of strings C1, C2, . . . , Cq and an integer l, we can find

all the occurrences of Ci of length ≥ l in S1 (for 1 ≤ i ≤ q) in O(|S1| +
∑q

i=1 |Ci|)
time; 7) Given n strings S1, S2, . . . , Sn, we can compute ℓ[2], ℓ[3], . . . , ℓ[n] in O(Mn)

time, where ℓ[i] is the length of the longest substring that occurs in ≥ i input strings

(2 ≤ i ≤ n) and M =
∑n

i=1 |Si|; and 8) Given n strings of total length M , we can solve

the all pairs suffix-prefix problem in O(M + n2) time.

4. We showed that we can sort n integers in the range [1, nc] in O(n) time, c being any

constant.

5. We can use the suffix array and the longest common prefix (LCP) array to search for

a pattern P in a text T in O(n + logm) character comparisons, where m = |T | and
n = |P |. We also pointed out that we can compute the LCP array (for pairs of interest

in string matching) in O(m) time.

CSE 4502/5717 Big Data Analytics

Fall 2024 Exam 3 Helpsheet

1. Association Rules Mining. An itemset is a set of items. A k-itemset is an itemset of size k. A

transaction is an itemset. A rule is represented as X → Y where X ̸= ∅, Y ̸= ∅, X ∩ Y = ∅.
We are given a database DB of transactions and the number of transactions in the database is n. Let

I be the set of distinct items in the database and let d = |I|.
For an itemset X, we define σ(X) as the number of transactions in which X occurs, i.e. σ(X) = |{T ∈
DB|X ⊆ T}| The support of any rule X → Y is σ(X∪Y)

n . The confidence of any rule X → Y is
σ(X∪Y)
σ(X) .

Association Rules Mining is defined as follows.

Input: A DB of transactions and two numbers: minSupport and minConfidence.

Output: All rules X → Y whose support is ≥ minSupport and whose confidence is ≥ minConfidence.

An itemset is frequent if σ(X) ≥ n ·minSupport

We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the

a priori principle: If X is not frequent then no superset of X is frequent. Also, If X is frequent then

every subset of X is also frequent.

The pseudocode for the Apriori algorithm is given next.

Algorithm 1: Apriori algorithm

k := 1;

Compute F1 = {i ∈ I|σ(i) ≥ n ·minSupport};
while Fk ̸= ∅ do

k := k + 1;

Generate candidates Ck from Fk−1;

for T ∈ DB do

for C ∈ Ck do

if C ⊆ T then

σ(C) := σ(C) + 1;

Fk := ∅;
for C ∈ Ck do

if σ(C) ≥ n ·minSupport then

Fk := Fk ∪ {C};

We can use a hash tree to compute the support for each candidate itemset.

We also presented a randomized Monte Carlo algorithm for identifying frequent itemsets. The idea was

to pick a random sample, identify frequent itemsets in the sample (with a smaller support) and output

these. We proved that the output of this algorithm will be correct with a high probability using the

Chernoff bounds:

If X is B(n, p), then the following are true:

Prob.[X ≥ (1 + ϵ)np] ≤ exp(−ϵ2np/3)

Prob.[X ≤ (1− ϵ)np] ≤ exp(−ϵ2np/2),

for any 0 < ϵ < 1.

2. Polynomial Arithmetic. A degree-n polynomial can be evaluated at a given point in O(n) time.

Lagrangian interpolation algorithm runs in O(n3) time whereas Newton’s interpolation algorithm takes

O(n2) time.

Two degree-n polynomials can be multiplied in O(n log n) time. A degree-n polynomial can be evaluated

at n given arbitrary points in O(n log2 n) time. Also, interpolation of a polynomial presented in value

form at n arbitrary points can be done in O(n log3 n) time.

