
CSE 5717 Big Data Analytics. Fall 2022

Exam IV Solutions

1. A sampling Lemma stated in class states the following. Let X be any set of n arbitrary real

numbers and let S be a random sample of X with s elements. If q is an element of S whose

rank in S is j and rj is the rank of q in X, then:

Prob

[∣∣∣rj − j
n

s

∣∣∣ > √
3α

n√
s

√
log n

]
≤ n−α.

The above Lemma suggests the following algorithm: 1) Pick a random sample S of X with

|S| = n2/3 log n; 2) Identify and output the median M of S. This median can be found in

O(|S|) time. This implies that the run time of the algorithm is O(n2/3 log n). If r is the rank

of M in X, then the above Lemma implies that:

Prob
[∣∣∣r − n

2

∣∣∣ > √
3αn2/3

]
≤ n−α.

2. We can employ radix sorting here. Think of each key as a logR-bit binary number. We sort

the keys in stages. In each stage we sort them with respect to log(M/B) bits. Sorting is done

starting from the LSBs and moving towards the MSBs.

In any stage of sorting we have to sort n keys where each key is an integer in the range
[
1, MB

]
.

In the core memory we keep M
B buckets, one for each possible value. We bring one block at a

time from the disk and distribute the keys in this block into the buckets based on the values

of the keys. A key whose value is i will be put into bucket i (for 1 ≤ i ≤ M
B . When a bucket

gets B keys, this block is written into the disk and the bucket becomes empty. There will be

a run in the disk corresponding to every possible value.

Clearly, there will be logR
log(M/B) stages in the algorithm and hence the total number of I/O

operations is O
(

n
B

logR
log(M/B)

)
.

3. Construct a suffix tree Q for S in O(n) time. Followed by this, perform an in-order traversal

of Q to label every internal node u of Q with an integer c[u] such that c[u] is the number of

leaves in the subtree rooted at u.

Now, perform one more traversal through Q to mark every node whose string depth is ≥ k.

In one additional traversal through Q identify the node u that is marked and whose c[u] is

the largest. Finally, output any substring of the path label of u whose length is k.

Clearly, the total run time of the algorithm is O(n).

4. Note that we generate association rules from frequent itemsets. A frequent itemset occurs in

at least one transaction. Let t be any transaction. Since the number of items in t is no more

than c, the number of itemsets we can generate out of t is less than 2c. This implies that the

total number of frequent itemsets is < n2c. Let X be any such frequent itemset. X has at

most c items in it. Using the result from Homework 3, problem 4(b), the number of association

rules that we can generate from X is ≤ 3c. As a result, the total number of association rules

we can construct from all possible frequent itemsets is < n2c3c = n6c = O(n).

5. First compute fi(x) = (x+ ai)
2i , for 1 ≤ i ≤ log n. For any i, (x+ ai)

2i can be computed in

time O(2i) (as per Problem 1, Homework 2). Thus all of these polynomials can be computed

in a total of O
(∑logn

i=1 2i
)
= O(n) time.

Followed by this, we do the following:

f(x) = f1(x);

for i = 2 to log n do

f(x) = f(x)× fi(x);

Using the theorem that we can multiply two degree d polynomials in O(d log d) time, the

total run time will be O(
∑logn

i=1 2ii) = O (n log n).

6. Note that given the activation values for layer l (for 1 ≤ l ≤ (L − 1)), we can compute

the activation values for layer l + 1 with a matrix-vector multiplication. Specifically, a⃗l+1 =

σ(W l+1a⃗l + b⃗l+1). Here W l+1 is the weight matrix (from layer l to layer l + 1) and is of

dimension n× n. a⃗l+1 and a⃗l are activation vectors and b⃗l+1 is the bias vector. These are of

dimension n× 1 each.

Consider the computation of W l+1a⃗l. Each row of W l+1 can be multiplied with a⃗l in O(log n)

time using n
logn CREWPRAM processors, with the employment of a prefix sums computation.

Thus, W l+1a⃗l + b⃗l+1 can be computed in O(log n) time using n2

logn CREW PRAM processors,

given a⃗l. Given W l+1a⃗l + b⃗l+1, we can compute a⃗l+1 in O(1) time using n processors.

In summary, one forward propagation step can be completed in O(L log n) time using n2

logn

CREW PRAM processors.

